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Abstract

A code in a graph is a proper subset of the graph’s vertex set. The elements of a code are called

the codewords, and the automorphism group of a code is the group of all graph automorphisms which

leave invariant the set of codewords. Given a finite set V of v elements and an integer k which satisfies

1 ď k ď v´1, we define the Johnson graph JpV, kq as follows: the vertices are the k-element subsets of

V, and vertices ∆1 and ∆2 are adjacent if and only if |∆1 X∆2| “ k´ 1. A code Γ in JpV, kq is called

X´strongly incidence-transitive if X is a subgroup of AutpΓq which acts transitively on Γ, and for each

codeword ∆ P Γ, the setwise stabiliser X∆ acts transitively on ∆ ˆ ∆, where ∆ “ Vz∆. The study

of strongly incidence-transitive codes in Johnson graphs was initiated by Robert Liebler and Cheryl

Praeger, in association with their investigations of neighbour-transitive codes in Johnson graphs. Their

research led to the discovery of several new infinite families of strongly incidence-transitive codes, but

also left several open problems. This thesis contributes towards the classification of strongly incidence-

transitive codes in Johnson graphs by addressing problems posed by Liebler and Praeger connected

with the following group actions:

(i) X “ Sp2np2q and V “ Qε is the set of all ε-type quadratic forms on F2n
2 which polarise to the

nondegenerate alternating form preserved by X; and

(ii) V “ Fn2 and X is a 2-transitive subgroup of AGLnp2q which contains the group of translations of

V.

In case (i) we classify all X-strongly incidence-transitive codes in JpV, kq under the condition that

the stabiliser of a codeword lies in one of the geometric Aschbacher classes of subgroups of Sp2np2q,

denoted C1-C8. This produces several new infinite families of X-strongly incidence-transitive codes

associated with the geometric Aschbacher classes, and in particular, we find that the stabiliser of a

codeword always lies in C1. Additionally, we investigate the X-strongly incidence-transitive codes in

case (i) related to the fully deleted permutation modules for the symmetric and alternating groups, and

find a pair of complementary codes when n “ 4 with codeword stabilisers isomorphic to S10. There

are no further examples associated with the fully deleted permutation modules for the symmetric and

alternating groups. If the stabiliser of a codeword lies in the almost-simple Aschbacher class C9 then

we are able to rule out the majority of possibilities, but leave some open cases. In particular, it is

currently unknown whether there exists an X-strongly incidence-transitive code Γ in case (i) with

∆ P Γ and socpX∆q either an alternating group Am with m ą 2n` 2 or a classical group of Lie type

over F4.

In case (ii) we introduce single-component strongly incidence-transitive codes and show that every

X-strongly incidence-transitive code can be expressed as a disjoint union of single-component codes.

Additionally, we construct a projection from an arbitrary single-component code Γ in Jp2n, kq onto

a translation-free code in Jp2n´m, k{2mq, where the number of translations fixing a given codeword

setwise is 2m. For r ě 4, it is demonstrated that the translation-free X-strongly incidence-transitive

codes in Jp2r, kq are the block sets of known families of point 2-transitive symmetric designs with

automorphism group ASprp2q, with r even and k “ 2r´1 ˘ 2r{2´1. We provide a process for lifting

a translation-free code to a single-component code, though it is currently unknown whether there are

alternative methods for achieving this.
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CHAPTER 1

Introduction

The birth of information theory is generally attributed to the publication of Claude Shannon’s

article ‘A Mathematical Theory of Communication’ [2] in 1948. In the two years following, Hamming

introduced the perfect 1-error-correcting codes which now bear his name [3], and Golay published a

one page article [4] which provided generator matrices for the perfect binary and ternary Golay codes.

Early coding theory was largely motivated by the possibility of detecting and correcting errors which

occur while communicating over a noisy channel. However, the underlying mathematical structures

are deeply connected with finite geometry, combinatorics and group theory. As an example, the

automorphism groups of the Golay codes and their extensions are closely related the the Mathieu

groups [5, Chapter 5]. The relationships between codes, combinatorics and algebra are explored in [6],

and further information of the sort can be found in [7, 8, 9, 10, 5].

Hamming [3] defines a code of length n over an alphabet A of size q to be a subset of vectors

in the n-fold cartesian product An, and calls the elements of a given code the codewords. If A is a

finite field then An is a finite vector space. In this situation, a pn, kq-linear code is defined to be a

k-dimensional subspace of An. Whether or not the code is linear, An comes equipped with a metric

dH , commonly called the Hamming metric, which is defined as follows: for any codewords x and y,

dHpx, yq is the number of indices such that xi ‰ yi. It is the Hamming metric which enables one to

quantify the ‘error correcting capabilities’ of a particular code. Indeed, suppose Γ Ă An is a code, and

let δ denote the minimum Hamming distance between any distinct pair of codewords. Imagine Alice

wishes to communicate with Bob over a digital channel using the code Γ. Alice encodes a message as

a codeword x, and upon transmission, the string received by Bob is y. To decode y, Bob attempts to

identify a unique codeword z which minimises dHpz, yq. Of course, if z is not unique then Bob cannot

decode y, but provided that dHpx, yq ď t δ´1
2 u, y will be correctly decoded to x. This type of decoding

is called nearest-neighbour decoding. Further details can be found in [9, Chapter 3].

Hamming’s definition of a code admits a natural generalisation. Indeed, let pX , dq be a metric

space, where |X | ă 8. A code is simply a subset of X . For the entirety of this dissertation, we restrict

this definition slightly by specifying that X is the vertex set of a connected undirected graph G with

a finite number of vertices and without loops or multiple edges. Graphs come equipped with a path

length metric, which computes the length of the shortest path between any given pair of vertices in

G . Codes of this type are generally referred to as codes in graphs. It should be noted that Hamming’s

definition of a code fits within the framework of codes in graphs since we may choose the vertex set

of G to be An and define vertices x and y to be adjacent if and only if their Hamming distance is

one. Examples from this important family of graphs are appropriately named Hamming graphs, and

denoted Hpn, qq with n ě 1 and q “ |A| ě 2. The study of codes in graphs was introduced in the PhD

thesis of Phillipe Delsarte [11], wherin he comments that ‘(the Hamming and Johnson graphs) appear

1



2 1. INTRODUCTION

to provide a natural framework for a combinatorial theory of codes’. We have met the former of these

families, now we introduce the latter.

Let V be a finite set of cardinality v and let k be an integer which satisfies 1 ď k ď v ´ 1. We

denote by
`V
k

˘

the set of all k-element subsets of V. The Johnson graphs, denoted JpV, kq, are a

family of distance-regular graphs with vertex set
`V
k

˘

. A pair of k-sets ∆1,∆2 P
`V
k

˘

are adjacent in

JpV, kq if and only if |∆1 X ∆2| “ k ´ 1. The Johnson metric on Jpv, kq is defined by the equation

dp∆1,∆2q “ v ´ |∆1 X∆2|. This corresponds to the length of the shortest path between ∆1 and ∆2.

When convenient to do so, we write Jpv, kq instead of JpV, kq. Note that if k “ 1 or v´ 1 then Jpv, kq

is a complete graph on v vertices. We therefore assume 2 ď k ď v ´ 2 for the remainder of the thesis.

We note that Norman Biggs introduces the concept of codes in distance-transitive graphs in [12],

independently of Delsarte.

1.1. Codes in graphs

Let G be a simple connected regular graph with vertex set V pG q, and let Γ Ă V pG q be a code. Denote

by d the path length metric defined on the vertex set of G . The minimum distance of Γ is defined as

δ “ mintdpx, yq | x, y P Γ, x ‰ yu. If e “ t δ´1
2 u then for any vertex y P V pG q which has a distance at

most e from a codeword x P Γ, the distance from y to x is strictly less than the distance from y to

any other codeword. For this reason, Γ is called an e-error correcting code, where e “ t δ´1
2 u. For each

x P V pG q we define the distance from x to Γ by dpx,Γq “ mintdpx, yq | y P Γu, and the covering radius

of Γ by ρ “ maxtdpx,Γq | x P V pG qzΓu. For each r P N we define the sphere of radius r centred on Γ by

Γr “ tx P V pG q | dpx,Γq “ ru. In particular, elements of Γ1 are called the neighbours of Γ. Note that

Γ “ Γ0. Similarly, we define the disk of radius r centered on Γ by DrpΓq “ tx P V pG q | dpx,Γq ď ru.

Note that ρ is the smallest integer such that V pG q “ YxPΓDρpxq.

The sphere packing bound is a fundamental inequality in coding theory. For a code Γ in a graph

G with minimum distance δ and e “ t δ´1
2 u, the sphere packing bound can be expressed as

|Γ|
ÿ

xPΓ

|Depxq| ď |V pG q| (1.1)

where Depxq is a disk of radius e centred on a codeword x. Equality holds in Equation (1.1) if and

only if the vertices of G can be partitioned into non-intersecting disks of radius ρ. In this case, Γ is

called a perfect code. If Γ is a perfect code then it is always possible to decode using nearest-neighbour

decoding. Of course, if too many errors occur then it is possible to decode incorrectly, but for every

string z received by the decoder there exists a unique codeword x which minimises dHpx, zq. We

have already met some examples of perfect codes in Hamming graphs Hpn, qq; the Hamming codes

constructed in [3] and the Golay codes [4] are perfect. Disappointingly, perfect codes are quite rare.

Indeed, if G is a Hamming graph over a finite field of order q then the only nontrivial perfect codes in

G are the Hamming codes and the Golay codes (see [13, 14]). There are no known nontrivial examples

of perfect codes in Johnson graphs, and Delsarte [11] conjectures that no examples exist. Delsarte’s

conjecture is open, though bounds and necessary conditions have led to non-existence proofs in special

cases. Chapter 1 of [15] provides an excellent overview of the problem.

An alternative approach is to weaken the conditions placed upon perfect codes. To this end,

Delsarte [11] introduced a family of codes called completely regular codes. Completely regular codes
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share many of the combinatorial properties associated with perfect codes [16], and if G is a distance

regular graph then every perfect code in G is completely regular [17]. The classes of codes described

thus far are defined in terms of a combinatorial restriction, but this is certainly not the only way to

construct codes.

Definition 1.1

Let Γ be a code in G . The automorphism group of Γ is the subgroup of elements in AutpG q which

stabilise Γ setwise. The full automorphism group of a code Γ is denoted AutpΓq.

A code Γ induces a partition of V pG q with parts Γi “ tx P V pG q | dpx,Γq “ iu, where i is an integer

ranging from 0 to ρ. Since AutpΓq preserves adjacency and fixes Γ setwise, the parts Γi are necessarily

invariant under the action of AutpΓq. The majority of our work is dedicated to the construction and

classification of families of codes using automorphism groups and the distance partition.

1.2. Codes in Hamming graphs

Let A be set of size q. Recall that the Hamming graph Hpn, qq is the graph with vertex set An, and

for any vertices x and y, x is adjacent to y if and only if dHpx, yq “ 1. For any vertex x, the weight of

x is defined to be the number indices i with 1 ď i ď n and xi ‰ 0. The weight is denoted by wtpxq. If

Γ is a linear code then wtpxq is the distance from x to the zero vector.

The symmetric group Sn acts on the vertices of Hpn, qq as the group of nˆn permutation matrices

which permute the coordinates of vectors in An. If Γ is a code in Hpn, qq, we call the group of

n ˆ n permutation matrices which fix Γ setwise the permutational automorphism group of Γ. The

permutational automorphism group is denoted PAutpΓq. The full automorphism group of Hpm, qq is

the wreath product Sq oSn [18, Theorem 9.2.1], where Sq is the symmetric group on A. In accordance

with Definition 1.1, we consider the full automorphism group of Γ to be the setwise stabiliser of

Γ in Sq o Sn. This is denoted AutpΓq. As explained in [19, Section 2.3.5], the definition of the

automorphism group of a code differs slightly throughout the coding theory literature. While Sq o Sn
preserves Hamming distance, coding theorists are often interested specifically in the weight preserving

automorphisms of codes, and usually refer to PAutpΓq as the ‘automorphism group of Γ’. In addition,

when A is a finite field of order q, there are two other automorphism groups which we mention.

A monomial matrix with entries in Fq is a square matrix with exactly one nonzero entry in every

row and column. The monomial automorphism group, MAutpΓq is the group of n ˆ n monomial

matrices which fix Γ setwise. If σ P AutpFqq, then for x “ px1, x2, . . . , xnq P Hpn, qq we define

xσ “ pxσ1 , x
σ
2 , . . . , x

σ
nq. The coding automorphism group, denoted CAutpΓq, is the group generated

by the nˆ n monomial matrices and field automorphisms. It is shown in [19, Section 2.3.5] that the

automorphism groups discussed above can be identified with subgroups of AutpΓq such that PAutpΓq ď

MAutpΓq ď CAutpΓq ď AutpΓq, and that each containment can be strict.

Definition 1.2

Let G “ Hpn, qq. Let Γ Ă V pG q be a code with covering radius ρ and let X be a subgroup of AutpΓq.
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For r ď ρ, we call Γ an pX, rq-neighbour-transitive code if X ď AutpΓq acts transitively on Γi for all i

with 0 ď i ď r. In particular, if Γ is pX, 1q-neighbour-transitive then we call Γ a neighbour-transitive

code, and if Γ is pX, ρq-neighbour-transitive then we call Γ a completely-transitive code. If Γ is linear and

X ď MAutpΓq acts transitively on the set of cosets of Γ then we call Γ X-coset completely-transitive.

The phrase ‘completely-transitive code’ was introduced by Solé in [20], specifically for codes in

Hpn, 2q. We call the codes discussed in [20] coset completely-transitive codes, as in Definition 1.2, to

distinguish them from the more general notion of complete transitivity. Note that PAutpΓq “ MAutpΓq

when q “ 2. Solé demonstrates that every binary coset completely-transitive code is completely regular

and shows that if Γ is a linear code in Hpn, 2q with covering radius ρ ď n{2 and the group of n ˆ n

permutation matrices which fix Γ setwise is r-homogeneous, then Γ is coset completely transitive.

As an application of the latter result, Solé provides the following examples of linear binary coset

completely-transitive codes: the perfect Hamming codes over F2, the extended Hamming codes over

F2 and the binary Golay codes in Hp23, 2q and Hp24, 2q.

Giudici and Praeger [21] generalise the notion of coset complete-transitivity to codes in Hpn, qq

and introduce X-completely transitive-codes in Hpn, qq as a subclass of completely regular codes.

They prove that a linear code in Hpm, qq is coset completely-transitive if and only if it is TΓ MAutpΓq-

completely-transitive, where TΓ denotes the group of translations of Fnq which fix Γ setwise. Since

TΓ MAutpΓq fixes Γ setwise, it follows that coset complete-transitivity is a special case of complete-

transitivity. In particular, a binary or ternary linear code is coset completely-transitive if and only if

it is completely-transitive [21, Theorem 1.2]. However, there exist completely transitive codes which

are not coset completely transitive. Completely-transitive codes, neighbour-transitive codes and 2-

neighbour-transitive codes in Hamming graphs are further studied in [22, 19, 23, 24, 25].

1.3. Codes in Johnson graphs

Let V be a finite set of cardinality v ě 4 and let k be an integer which satisfies 2 ď k ď v ´ 2.

Recall that the Johnson graph JpV, kq is the graph with vertex set
`V
k

˘

, where k-sets ∆1,∆2 P
`V
k

˘

are

adjacent if and only if |∆1 X∆2| “ k ´ 1. If ∆ P
`V
k

˘

then we write ∆ :“ Vz∆.

Every element of SympVq induces a permutation on
`V
k

˘

. Indeed, for each vertex β P
`V
k

˘

and each

permutation g P SympVq we define βg “ tωg | ω P βu. It turns out that SympVq is an automorphism

group of Jpv, kq and, provided that k ‰ 1
2v, SympVq is the full automorphism group of Jpv, kq (see [18,

Theorem 9.1.2]). We define a bijection c :
`V
k

˘

Ñ
` V
v´k

˘

which maps each vertex β to its complement

βc “ β “ Vzβ. In fact, c is a graph isomorphism between Jpv, kq and Jpv, v´kq and c2 “ 1. If v “ 2k

then c generates a subgroup of order two in AutpJp2k, kqq and the full automorphism group of Jp2k, kq

is SympVq ˆ xcy – SympVq ˆ C2. To summarise, the full automorphism group of the Johnson graphs

are given by

AutpJpV, kqq –

#

SympVq ˆ C2 if v “ 2k ě 4

SympVq otherwise.
(1.2)

The details are available in [18, Theorem 9.1.2].

Let Γ Ă
`V
k

˘

be a code and X a subgroup of the automorphism group of JpV, kq. For the remainder

of the thesis, we assume that X ď SympVq, unless we explicitly state otherwise. Definition 1.2 can
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be generalised to an arbitrary simple connected graph, though we are interested mainly in the case

G “ Jpv, kq.

Definition 1.3

Let G be a simple connected graph. Let Γ Ă V pG q be a code with covering radius ρ and let X be

a subgroup of AutpΓq. For r ď ρ, we call Γ an pX, rq-neighbour-transitive code if X ď AutpΓq acts

transitively Γi for all i with 0 ď i ď r. If Γ is an pX, ρq-neighbour-transitive code then we call Γ

a completely-transitive code. If Γ is an pX, 1q-neighbour-transitive code then we call Γ a neighbour-

transitive code.

Definition 1.4

Let Γ be a code in JpV, kq. The complementary code is the code in JpV, v´ kq defined by Γc “ tVz∆ |

∆ P Γu. If Γ “ Γc then we call Γ a self-complementary code.

Remark 1.5

By [1, Remark 1.4(d)], Γ is neighbour-transitive if and only if Γc is neighbour-transitive, and both

codes have the same minimum distance.

Completely-transitive codes in Johnson graphs were introduced by Godsil and Praeger in [26].

Neighbour-transitive codes are introduced in [1] and further explored in [27] and [28]. Neighbour-

transitive codes in Johnson graphs play a central role in this thesis.

Let Γ Ă
`V
k

˘

be a code, and let ∆ be a codeword. By definition, a vertex ∆1 P
`V
k

˘

lies adjacent to

∆ if and only if |∆X∆1| “ k ´ 1. We view the pair pΓ,Γ1q as an incidence structure, where ∆ P Γ is

incident with ∆1 P Γ1 if and only if |∆X∆1| “ k ´ 1. This leads to the following definition.

Definition 1.6 ([1])

Let Γ be a code in JpV, kq and X a subgroup of AutpJpV, kqq. We call Γ an X-incidence-transitive

code if X acts transitively on pairs p∆,∆1q P Γˆ Γ1 with |∆X∆1| “ k ´ 1.

It is possible to further strengthen the notion of incidence-transitivity by identifying the neighbours

of a codeword ∆ with the elements of the cartesian product ∆ˆ∆ in the following manner.

Lemma 1.7

Let G “ JpV, kq with 1 ă k ă |V| ´ 1. Let ∆ be a vertex of G and denote by Γ1p∆q the set of vertices

of G adjacent to ∆. Then the function f : ∆ˆ∆ Ñ Γ1p∆q defined by fpω, ω1q “ p∆ztωuq Y tω1u is a

bijection.
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Proof. By definition, ∆1 P Γ1 if and only if |∆ X∆1| “ k ´ 1, which holds if and only if there

exist unique elements ω, ω1 P V such that ∆zp∆X∆1q “ tωu and ∆1zp∆X∆1q “ tω1u. It follows that

f is a bijection. �

Definition 1.8 ([1])

Let Γ be a code in JpV, kq and X a subgroup of AutpJpV, kqq. We call Γ an X-strongly incidence-

transitive code if X acts transitively on Γ and, for all ∆ P Γ, the setwise stabiliser X∆ acts transitively

on the cartesian product ∆ˆ∆.

Since X is required to act transitively on Γ in Definition 1.8, it follows that X∆ acts transitively

on ∆ ˆ ∆ for all ∆ P Γ if and only if there exists a codeword ∆ P Γ such that X∆ acts transitively

on ∆ ˆ ∆. If Γ is X-incidence-transitive then clearly Γ is neighbour-transitive also. If δ ď 2, then

[1, Example 2.2] shows that there exist neighbour-transitive codes which are not incidence-transitive.

In addition, every strongly incidence-transitive code is incidence-transitive, but there exist incidence-

transitive codes, necessarily with δ “ 1, which are not strongly incidence-transitive; examples of these

can be found in [1, Examples 3.1 and 4.4].

This thesis is a contribution towards the classification of X-strongly incidence-transitive codes in

Johnson graphs JpV, kq with X ď SympVq. The classification is divided into three subcases determined

by the action of X on the point set V: X is intransitive on V, X is transitive and imprimitive on

V, or X is primitive on V (see Section 2.2 for definitions). In the two former cases, a complete

classification of X-neighbour-transitive codes is achieved in [1]. The authors note that while some of

the constructed codes are new, others correspond to codes previously studied (see [29, 30, 31, 26]). If

X acts primitively on V then the following theorem suggests that a complete classification is possible.

Theorem 1.9 ([1])

Let Γ Ă
`V
k

˘

and X ď AutpΓq X SympVq, where 2 ď k ď |V| ´ 2.

(a) Γ is X-strongly incidence-transitive if and only if Γ is X-incidence-transitive and δ ě 2.

(b) If δ ě 3 and Γ is X-neighbour-transitive, then Γ is X-strongly incidence-transitive.

(c) If X is primitive on V and Γ is incidence-transitive, then X is 2-transitive on V.

If X acts primitively on V then Theorem 1.9(c) allows us to make use of the classification of the

finite 2-transitive permutation groups (see [32, 33]; a statement is available in Section 2.2). The

finite 2-transitive permutation groups can be further subdivided into two families: those which lie

in an infinite family of group actions, and those which do not. The latter subfamily, referred to as

the sporadic case, are considered in [27] and a classification of the associated X-strongly incidence-

transitive codes with minimum distance at least 2 is obtained. There are 27 examples in total, including

5 examples of self-complementary codes.

In combination with Durante [28], Liebler and Praeger [1] classified all the neighbour-transitive

codes in JpV, kq admitting a group of automorphisms which acts 2-transitively on V and lies in an
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infinite family of 2-transitive actions, excluding the natural action of AGLnp2q on Fn2 and the Jordan-

Steiner actions of Sp2np2q. We describe these cases below.

Jordan-Steiner case: For each integer n P r1 : 8q and each ε P t`,´u we let V “ Qε
n denote the

set of all 2n´1p2n ` εq quadratic forms of type ε which polarise to a given nondegenerate alternating

bilinear form B. The symplectic group X “ Sp2np2q preserving B admits a faithful and 2-transitive

action on Qε as follows: for all ϕ P Qε and g P X we define ϕg by the equation ϕgpxq “ ϕpxg´1q, for

all x P V .

Binary affine case: For each integer n P r1 : 8q we let V denote the set of all n-tuples over

F2. The affine group AGLnp2q acts naturally on V by a combination of translations and matrix

multiplication. The action is faithful and 2-transitive on V. Denote by X any 2-transitive subgroup of

AGLnp2q which contains the full subgroup of translations of V.

When reading the literature it appears that the binary affine case is classified using a combination

of results in [1, 28]. During the course of my PhD we discovered a small gap in [1, Proposition 6.6]

for affine type codes over F2. We show in Appendix A that the results of Liebler and Praeger remain

valid in the affine case for q ą 2.

Problem 1.10 (Main Problem)

Let V be a set of v ě 4 points and suppose 3 ď k ď v´ 3. Classify the X-strongly incidence-transitive

codes Γ Ă
`V
k

˘

with X ď SympVq X AutpΓq, where the action of X on V is as described above in the

Jordan-Steiner case or the binary affine case.

The Jordan-Steiner actions are described in Chapter 3. A summary of our results and the open

cases which remain is available in Chapter 8. We may assume 3 ď k ď v ´ 3 in Problem 1.10 because

X acts 2-transitively on V and therefore X acts transitively on the vertices of Jpv, 2q and Jpv, v ´ 2q.

As mentioned previously, Jpv, 1q and Jpv, v ´ 1q are complete graphs.

Remark 1.11

When ε appears in numerical formulas, we commit a slight abuse of notation and identify ` with `1

and ´ with ´1. This convention is followed throughout the thesis in order to simplify formulas which

involve ε.

1.4. Related concepts and preliminary results

In Section 1.4 we introduce some concepts linked with strongly incidence-transitive codes in Johnson

graphs, outline our methods of investigation in the Jordan-Steiner case, and prove some basic results

which are used throughout the thesis.
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1.4.1. Block designs

An incidence structure is a triple D “ pp, b, iq which consists of a finite set p of v points, a finite set

b of blocks, each of size k, and an incidence relation i Ď p ˆ b. An incidence structure is called a

t-pv, k, λq design if for every t-subset t Ă p, there are precisely λ blocks incident with every element of

t. If the block set of D is tpu or
`

p
k

˘

then D is a t-design for all t ď k. These are referred to as trivial

designs. The number of blocks of D is denoted b, and the number of blocks incident with any given

point is denoted r. The latter of these parameters called the replication number. The parameters of

D are related by the equations

bk “ vr and rpk ´ 1q “ λpv ´ 1q. (1.3)

We view each block as a k-subset of points and we do not allow repeated blocks. We therefore identify

b with a collection of k-element subsets of p, and write p P β if and only if pp, βq P i. The elements of

i are called flags and the elements of pp ˆ bqzi are called antiflags. Let D be a t-pv, k, λq design. An

automorphism of D is a pair pσ, µq, where σ is a permutation on the point set, µ is a permutation on

the block set, and for every pp, βq P pˆ b we have p P β if and only if pσ P βµ.

The blocks of a t-pv, k, λq design define a code in Jpv, kq, although an arbitrary code in Jpv, kq

does not necessarily correspond to the block set of a design. However, if Γ is an X-strongly incidence-

transitive code in JpV, kq and X acts primitively on V, then by [1, Theorem 1.2(c)], X acts 2-

transitively on V. This implies pV,Γq is a 2-pv, k, λq design. Moreover, the set of codewords of each of

the 27 strongly incidence-transitive codes constructed in [27] is a t-pv, k, λq design with t ě 2.

Definition 1.12

Let D be a t-pv, k, λq design and X an automorphism group of D . We call D an X-strongly incidence-

transitive design if X acts transitively on the set

T “ tpp1, p2, βq P pˆ pˆ b | p1 P β and p2 R βu

under the natural action on cartesian products.

Anne Delandtsheer classified the strongly incidence-transitive 2-pv, k, 1q designs as a Corollary to

her classification of antiflag-transitive linear spaces [34].

Theorem 1.13 ([34])

Let L be a 2-pv, k, 1q design and suppose X is an automorphism group of L which acts transitively

on the set of antiflags of L . Then L corresponds to one of the following designs:

(a) a Desarguesian projective or affine space of dimension at least 2,

(b) a Hermitian unital,

(c) Hering’s plane of order 27, or

(d) the nearfield plane of order 9.

In particular, L is strongly incidence-transitive if and only if L is as in item (a) or (b).
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1.4.2. Group factorisations

Let G be a finite group and let A and B be proper nontrivial subgroups of G. If G can be expressed

as a product AB “ tab | a P A, b P Bu of subgroups A and B, then we say the expression G “ AB is a

factorisation of G. If A and B are maximal subgroups of G then we say the factorisation is maximal.

If neither A nor B contain T , then we call the factorisation a core-free factorisation. The maximal

factorisations of the simple groups of Lie type are classified in [35]. The factorisations of the sporadic

simple groups are classified in [36]. These classification results will be used in Chapter 6.

Lemma 1.14 ([35], pg. 41)

Let G be a finite group and let A and B be subgroups of G. The following statements are equivalent:

(a) G “ AB

(b) A is transitive on the cosets of B in G

(c) B is transitive on the cosets of A in G

(d) |G : A| “ |B : AXB|

(e) |G : B| “ |A : AXB|

Lemma 1.15

Let Γ be a strongly incidence-transitive code in JpV, kq for 2 ď k ď v ´ 2. For all ∆ P Γ and for all

pϕ,ψq P ∆ˆ∆, the expression X∆ “ X∆,ϕX∆,ψ is a group factorisation.

Proof. Let ∆ P Γ and G “ X∆. If Γ is strongly incidence-transitive then Gϕ acts transitively on

the elements of ∆. Then the Orbit-Stabiliser Theorem implies the action of Gϕ on ∆ is permutationally

isomorphic to the action of Gϕ on the coset space G{Gψ. Similarly, the transitive action of Gψ on

∆ is permutationally isomorphic to the transitive action of Gψ on the coset space G{Gϕ. Therefore

Theorem 1.14 implies G is transitive on ∆ˆ∆ if and only if G “ GϕGψ. �

Lemma 1.16 ([35], pg. 41)

Let G be a finite group and let A and B be subgroups of G. Then

|AXB| ě
|A||B|

|G|
.

Equality holds if and only G “ AB is a factorisation.

1.4.3. Plan of attack

The following observation provides a starting point for our analysis of the Jordan-Steiner actions.

Lemma 1.17 ([27])

Let V be a set of v elements and let Γ Ă
`V
k

˘

be an X-strongly incidence-transitive code, where X is a

transitive subgroup of SympVq and 2 ď k ď v ´ 2. Then there exists an integer ` ě 1 and a chain of
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Class Associated Geometric Structure
C1 Subspace
C2 Direct sum decomposition
C3 Field extension
C4 Tensor product
C5 Subfield
C6 Extraspecial structure
C7 Tensor power
C8 Classical form

Table 1.1. Geometric Aschbacher classes and associated structures

subgroups

X∆ “ H0 ă H1 ă ¨ ¨ ¨ ă H` “ X

such that each Hi is a maximal subgroup in Hi`1 for 0 ď i ă `, all Hi with 1 ď i ď ` are transitive on

V, H0 has exactly two orbits ∆ and Vz∆, and X∆ is transitive on ∆ˆ pVz∆q.

Aschbacher [37] introduced nine classes of subgroups in classical groups which have come to be

known as Aschbacher classes. The first eight Aschbacher classes C1 ´ C8 are said to be of geometric

type, since they are associated with geometric structures in vector spaces. The geometric classes are

roughly described in Table 1.4.3. The ninth Aschbacher class C9 is called the almost simple class, since

taking the quotient of an element of C9 by its centre yields an almost simple group.

Aschbacher demonstrated that the maximal subgroups of a classical group must lie in at least

one of Ci for 1 ď i ď 9, though the elements of these classes are not necessarily maximal. Kleidman

and Liebeck extended Aschbacher’s theorem in [38] by providing necessary and sufficient conditions

to determine maximality of a geometric subgroup of a classical group, provided that the dimension of

the natural module is at least 13. Bray, Holt and Roney-Dougal’s book [39] contains a full analysis

of the geometric and almost simple maximal subgroups of classical groups where the dimension of the

natural module is between 2 and 12, inclusive. Knowledge of the maximal subgroups of classical groups

will be an invaluable tool for the construction and analysis of strongly incidence-transitive codes with

automorphism group Sp2np2q. Detailed descriptions of the geometric Aschbacher classes can be found

in [39]. We describe below the maximal subgroups of Sp2np2q.

Theorem 1.18 ([5], pg. 92)

Let V “ F2n
2 and let M be a maximal subgroup of Sp2np2q which lies in one of the classes C1 ´ C8.

Then one of the following holds:

(a) M – Sp2dp2qˆSp2pn´dqp2q is a C1-subgroup fixing a 2d-dimensional nondegenerate subspace of V ,

where 1 ď d ď n{2´ 1.

(b) M – 2dpd`1q{2.22dpn´dq ¸ Sp2pn´dqp2q is a C1-subgroup fixing a d-dimensional totally isotropic

subspace of V , where 1 ď d ď n.

(c) M – Sp2mp2q o St is a C2-subgroup fixing a decomposition V “ ‘ti“1Vi of V into nondegenerate

subspaces, each of dimension 2m “ 2n{t.

(d) M – Sp2mp2
bq ¸ Cb is a C3-subgroup where b is prime and n “ mb.
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(e) M – GOε
2np2q is a C8-subgroup corresponding to a point stabiliser in the Jordan-Steiner actions.

Remark 1.19

We reflect on the geometric Achbacher classes which do not appear in Theorem 1.18. Further infor-

mation may be obtained by studying the tables in [38] and [39].

(a) The C1-subgroup Sp2dp2qˆSp2pn´dqp2q is not maximal for d “ n{2 since it lies inside the maximal

C2 subgroup Spnp2q ˆ Spnp2q ˆ Z2.

(b) The C4-subgroups of Sp2np2q are of the form H – Spn1
p2q b GOε

n2
p2q where n2 ě 3. However,

H ă GOε
2np2q ă Sp2np2q, so H is not maximal in Sp2np2q.

(c) The C5-subgroups of Sp2npqq are isomorphic to Sp2npq0q.p2, q ´ 1, rq where q “ qr0 and r is prime.

This case does not arise since F2 has no proper subfields.

(d) The C6-subgroups of Sp2npqq are of the form 21`2m.GO´2mp2q with 2n “ 2m. By [38, Table 3.5.C]

these do not need to be considered when q “ 2.

(e) The C7-subgroups of Sp2np2q are of the form H – 2.PSpnpqq
t.2t´1.St. Such groups are maximal

if and only if mq is odd and pm, qq ‰ p2, 3q. If mq is even then groups of this type are maximal in

the hyperbolic orthogonal groups and are therefore not maximal in Sp2mp2q.

We finish our introduction with a number of basic results which are referenced throughout the

thesis.

Corollary 1.20

Let Γ be a code in JpV, kq with 2 ď k ď |V| ´ 2 and let X ď SympVq XAutpΓq. Then Γ is X-strongly

incidence-transitive if and only if X acts transitively on V, there exists ω P V such that Xω acts

transitively on the set of codewords which contain ω, and there exists ∆ P Γ with ω P ∆ such that

Xω,∆ acts transitively on ∆.

Lemma 1.21

Let Γ be a strongly incidence-transitive code in JpV, kq with ∆ P Γ. Let M be a subgroup of X “

AutpΓq which acts transitively on V while preserving a system of imprimitivity I. If X∆ ă M ď X

then ∆ is a union of blocks in I.

Proof. Let ∆ P Γ. Since Γ is strongly incidence-transitive, X∆ has two orbits in V, namely ∆

and ∆. We assume without loss of generality that |∆| ď |∆|. Suppose that ∆ is not a union of blocks.

Naturally, this implies ∆ is not a union of blocks either. Therefore there exists a block Σ P I such

that ΣX∆ and ΣX∆ are non-empty, and since |∆| ď 1
2 |V| there exists Σ1 P I such that Σ1 ‰ Σ and

Σ1 Ę ∆. Choose ω0, ω, ω
1 P V as follows: ω0 P ΣX∆, ω P ΣX∆ and ω1 P Σ1X∆. Since Γ is X-strongly

incidence-transitive, there exists a permutation h P X∆,ω0
such that ωh “ ω1. However, ω0 is fixed by

h and therefore Σ is fixed setwise by h. On the other hand h moves ω P Σ to ω1 P Σ1, a contradiction.

Therefore ∆ and ∆ are unions of blocks. �
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Remark 1.22

Suppose Γ is a strongly incidence-transitive code in JpV, kq for some 2 ď k ď 1
2 |V|. Let ∆ P Γ and

M be a maximal subgroup of AutpΓq such that X∆ ďM . Then by definition, for all ω P ∆ the point

stabiliser X∆,ω acts transitively on ∆. Since X∆ ďM , for each ω P ∆ there exists a unique Mω-orbit

in V containing ∆. We will denote this orbit by Θpωq. In particular, for any subset A Ď ∆ we must

have ∆ Ď XωPAΘpωq.



CHAPTER 2

Group theoretic background

Chapter 2 contains a brief review of selected topics in finite group theory. Further details can be

found in [40, 41, 42, 33, 5].

2.1. Finite simple groups

Let G be a group. The commutator r¨, ¨s : GˆGÑ G is defined by

rg, hs “ g´1h´1gh

for all g, h P G. The derived subgroup of G is defined by

G1 “ xrg, hs | g, h P Gy.

If G “ G1 then G is called a perfect group. The exponent of a finite group is the least common multiple

of its element orders. The Frattini subgroup ΦpGq is the intersection of all maximal subgroups of G.

A subgroup H ď G is called a characteristic subgroup of G if it is fixed setwise by the natural action

of AutpGq. For example, the Frattini subgroup ΦpGq and the derived subgroup G1 are characteristic

subgroups of AutpGq.

Definition 2.1

Let G be a nontrivial group. We say G is simple if it contains no proper non-trivial normal subgroups.

We say G is almost simple if there exists a nonabelian simple group T such that T Ĳ G ď AutpT q.

We say G is quasisimple if G is perfect and G{ZpGq is almost simple.

Theorem 2.2 (CFSG. See [5], pg. 3)

Every finite simple group is isomorphic to one of the following groups:

(a) A cyclic group Cp of prime order;

(b) An alternating group An with n ě 5;

(c) A simple group of Lie type

(i) PSLnpqq, n ě 2, except PSL2p2q and PSL2p3q;

(ii) PSUnpqq, n ě 3, except PSU3p2q;

(iii) PSp2npqq, n ě 2, except PSp4p2q;

(iv) PΩ2n`1pqq, n ě 3, q odd;

(v) PΩ`2npqq, n ě 4;

(vi) PΩ´2npqq, n ě 4;

(vii) E6pqq,
2E6pqq, E7pqq or E8pqq;

13
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(viii) G2pqq, q ě 3;

(ix) F4pqq;

(x) 2B2p2
2n`1q, n ě 1;

(xi) 2G2p3
2n`1q, n ě 1;

(xii) 2F4p2
2n`1q, n ě 1;

(xiii) 2F4p2q
1

where q is a prime power; or

(d) one of 26 sporadic simple groups

(i) a Mathieu group M11,M12,M22,M23,M24;

(ii) a Leech lattice group Co1, Co2, Co3,McL,HS, Suz, J2;

(iii) a Fischer group Fi22, F i23, F i
1
24

(iv) a Monstrous group M,B, Th,HN,He;
(v) a pariah J1, J3, J4, O

1N,Ly,Ru.

Conversely, every group listed above is simple, and the only repetitions are PSL2p4q – PSLp2, 5q – A5,

PSL2p7q – PSLp3, 2q, PSL2p9q – A6, PSL4p2q – A8 and PSU4p2q – PSp4p3q.

2.2. Permutation Groups

Section 2.2 is a review of selected results related to finite permutation groups. For further details we

suggest consulting [33], [32], or the classic text [43].

A permutation on a set Ω is a bijection from Ω to itself. The symmetric group is denoted by SympΩq

and consists of all permutations on Ω, with multiplication defined by composition of permutations. A

permutation group is a subgroup of SympΩq. The cardinality of Ω is referred to as the permutation

degree of G. If |Ω| “ n ă 8 then we write Sn “ SympΩq.

A group action of G on a set Ω is a group homomorphism λ : GÑ SympΩq. The homomorphism λ

is sometimes called a permutation representation of G. The kernel of λ is the subgroup of all elements

of G which fix every point of Ω. If kerpλq “ t1u then we say that G acts faithfully on Ω, otherwise the

action is unfaithful. A group with a faithful permutation representation is isomorphic to a subgroup

of SympΩq.

When there is no risk of ambiguity we will suppress the function λ and denote the image of ω

under λpgq by ωg. If Ω is a set of vectors and G is a matrix group acting by right multiplication we

will instead denote the image of v under λpgq by vg. A G-space is a set Ω together with a function

ΩˆGÑ Ω which satisfies

(a) ω1 “ ω for all ω P Ω, and

(b) pωgqh “ ωgh for all ω P Ω and g, h P G.

As one might expect, a group action may be used to define a G-space and a G-space may always

be derived from a group action.

Example 2.3

Let G “ GLnpqq dnote the group of invertible nˆ n matrices over Fq, and let Ω denote the set of all

1-dimensional subspaces of the vector space Fnq . Then G acts on Ω by right multiplication. The action
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is faithful if and only if q “ 2; the kernel is the subgroup of scalar matrices with nonzero determinant,

K “ tαI | α P Fqzt0uu. The quotient group PGLnpqq “ GLnpqq{K acts faithfully on Ω.

Definition 2.4

Let G be a permutation group on Ω and let ω P Ω. The orbit of ω under G is the subset of Ω

ωG “ tωg | g P Gu

which consists of all images of ω under an element of G. The stabiliser of ω in G is the subgroup of G

Gω “ tg P G | ω
g “ ωu

which consists of all elements of G which fix ω. Similarly, for any subset S of Ω, the setwise stabiliser

of S in G is the subgroup of G

GS “ tg P G | ω
g P S,@s P Su

which consists of all elements of G which leave S invariant. We define

Gω,S “ Gω XGS .

Definition 2.5

Suppose G ď SympΩq and H ď SympΣq. A permutational isomorphism from G to H consists of a

bijection f : Ω Ñ Σ and a group isomorphism θ : GÑ H such that fpωqθpgq “ fpωgq for all ω P Ω and

g P G. If G “ H and there exists a permutational isomorphism between the action of G on Ω and the

action of G on Σ then we say the actions are equivalent.

Theorem 2.6 (The Orbit-Stabiliser Theorem [33], pg. 5)

Let G be a permutation group on Ω. For all ω P Ω there exists a bijection between ωG and the set

cospG : Gωq of right cosets of Gω in G. In particular, if Ω is finite then |G| “ |ωG||Gω|.

Example 2.7

Let G “ GLnpqq, V “ Fnq and let Ωk denote the set of k-dimensional subspaces of V . Then G acts

on Ωk and Ωn´k for each integer k satisfying 1 ď k ď n. The function K: Ω1 Ñ Ωn´1 defined by

xuyK “ tx P V | uxT “ 0u is a bijection and the mapping ι : g ÞÑ pg´1qT is an automorphism of G.

Moreover, for all g P G we have

`

uK
˘ιpgq

“ tx P V | uxT “ 0ug
´T

“ txg´T P V | uxT “ 0u.

Setting y “ xg´T we have x “ ygT and therefore

txg´T P V | uxT “ 0u “ ty P V | upygT qT “ 0u

“ ty P V | pugqyT “ 0u

“ xugyK.
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We have shown
`

uK
˘ιpgq

“ xugyK and therefore the pair pι,Kq is a permutational isomorphism between

the action of G on Ω1 and the action of G on Ωn´1.

Definition 2.8

Let N be a group and let H be a subgroup of AutpNq. The semidirect product of N by H is the group

N ¸H which has underlying set N ˆH and defined as follows:

pn1, h1q ¨ pn2, h2q :“ pn1n
h´1

1
2 , h1h2q

for all n1, n2 P N and h1, h2 P H.

Example 2.9

The affine group G “ AGLnpqq consists of all affine transformations of a vector space V “ Fnq . We may

express G as a semidirect product G “ V ¸G0, where V acts on itself by translation and G0 – GLnpqq

acts on V by matrix multiplication.

Definition 2.10

Let G and H be finite groups and let H ď Sn. The wreath product G oH is the group

G oH “ Gn ¸H

where the action of H on Gn, which allows us to identify H with a subgroup of AutpGnq, is defined by

pg1, g2, ¨ ¨ ¨ , gnq
h´1

“ pg1h , g2h , ¨ ¨ ¨ , gnhq

for all pg1, g2, ¨ ¨ ¨ , gnq P G
n and h P H.

Definition 2.11

A permutation group G on Ω is called transitive if for all ω1, ω2 P Ω, there exists g P G such that

ωg1 “ ω2. In other words, G has a single orbit in Ω. We say G acts intransitively on Ω if it has more

than one orbit in Ω. If G is transitive on Ω and |G| “ |Ω| then G is called a regular permutation group.

A permutation group G ď SympΩq acts on the set Ωk of k-tuples by

pω1, ω2, . . . , ωkqσ “ pω1σ, ω2σ, . . . , ωkσq

for σ P G and ωi P Ω. This action leaves invariant the set of k-tuples of pairwise distinct elements of

Ω. We say G is k-transitive if it acts transitively on the set of k-tuples of pairwise distinct elements of

Ω.

Lemma 2.12 ([33], pg. 10)

Let G be a permutation group. Then G is k-transitive if and only if G is transitive and Gω is pk´ 1q-

transitive on Ωztωu.
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The only k-transitive permutation groups with k ě 6 are the alternating and symmetric groups

(see [32], Chapter 7). The k-transitive groups with 2 ď k ď 5 are known explicitly. The only known

proofs of these results depend on the classification of finite simple groups (see Theorem 2.2). Theorem

2.13 below lists the 2-transitive group actions. A description of each of the actions is available in [32],

Section 7.7.

Theorem 2.13 ([44])

Let G be a finite 2-transitive group acting on a finite set Ω. Then one of the following holds:

(a) G is of almost simple type with unique minimal normal subgroup T , and T is one of the following

non-abelian simple groups:

(i) T “ An, of degree n ě 5;

(ii) T “ PSLnpqq, of degree pqn ´ 1q{pq ´ 1q with n ě 2 and pn, qq ‰ p2, 2q, p2, 3q;

(iii) T “ Sp2np2q, of degree 2n´1p2n ˘ 1q, with n ě 3;

(iv) T “ PSU3pqq, of degree q3 ` 1 with q ě 3;

(v) T “ Szpqq, of degree q2 ` 1, with q “ 22n`1 ą 2;

(vi) T “ Reepqq, of degree q3 ` 1, with q “ 32n`1 ą 3;

(vii) T “Mn, a Mathieu group of degree n, with n P t11, 12, 22, 23, 24u;

(viii) T “ PSL2p11q of degree 11; T “ M11 of degree 12; T “ A7 of degree 15; T “ PSL2p8q of

degree 28; T “ HS of degree 176; T “ Co3 of degree 276.

(b) G is of affine type, and Ω may be identified with a vector space V of dimension n over Fq, for some

prime power q. Moreover, one of the following holds for G0, the stabiliser of the zero vector in V :

(i) SLnpqq ď G0 ď ΓLnpqq;

(ii) Sp2npqq Ĳ G0;

(iii) n “ 6, q even and G2pqq Ĳ G0;

(iv) SL2p3q “ 21`2 ¸ 3 Ĳ G0;

(v) 21`4 Ĳ G0;

(vi) SL2p5q Ĳ G0;

(vii) n “ 4, q “ 2 and G0 “ A6 or A7;

(viii) n “ 6, q “ 2 and G0 “ PSU3p3q;

(ix) n “ 6, q “ 3 and G0 “ SL2p13q.

Definition 2.14

Let G be a transitive permutation group. A block for G is a subset Σ Ď Ω such that for all g P G,

Σg “ Σ or ΣXΣg “ ∅. Note that if Σ is a block for G then Σg is also a block for all g P G. A system

of imprimitivity for G is a G-invariant partition of Ω into blocks. Every permutation group admits at

least two systems of imprimitivity: a partition of Ω into single element sets and a partition of Ω with

a single block. Such partitions are considered trivial. A transitive permutation group which preserves

no nontrivial system of imprimitivity is called a primitive group. Now, let M be a proper subgroup of

G.
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We say M is a maximal subgroup of G if there are no groups H such that M ă H ă G. The

maximality of point stabilisers in G are directly related to the primitive actions of G.

Lemma 2.15 ([32], pg. 14)

Let G be a transitive permutation group on a non-empty set Ω. Then G is primitive if and only if

there exists ω P Ω such that the point stabiliser Gω is a maximal subgroup of G.

Lemma 2.16 ([32], pg. 18)

Let G be a transitive subgroup of SympΩq and let N Ÿ G be an intransitive normal subgroup. Then

the N -orbits in Ω form a system of imprimitivity preserved by G. In particular, if G is primitive then

every normal subgroup is transitive.

Definition 2.17

A permutation group on a set Ω is called k-homogeneous if it acts transitively on the set
`

Ω
k

˘

of

k-subsets of Ω.

A k-transitive group is necessarily k-homogeneous. However, the converse is not true. The next

theorem classifies the k-homogeneous groups which are not k-transitive.

Theorem 2.18 ([45])

Let G be a permutation group which is k-homogeneous on a finite set Ω but not k-transitive, where

2 ď k ď 1
2 |Ω|. Then up to permutational isomorphism, one of the following holds:

(a) k “ 2 and G ď AΓL1pqq with n “ q ” 3 mod 4;

(b) k “ 3 and PSL2pqq ď G ď PΓL2pqq, where n´ 1 “ q ” 3 mod 4;

(c) k “ 3 and G “ AGL1p8q,AΓL1p8q or AΓL1p32q; or

(d) k “ 4 and G “ PSL2p8q,PΓL2p8q or PΓL2p32q.

Conversely, each group listed above is a k-homogeneous group which is not k-transitive.

2.3. Classical groups

Section 2.3 provides an introduction to classical forms and their isometry groups. Further details are

available from [42, 46, 39, 38].

Definition 2.19

Let V be a vector space over F and let σ P AutpFq. A function B : V ˆV Ñ F is called a σ´sesquilinear

form if for all u, v, w P V and α, β P F, B satisfies:

(a) Bpαu` βv,wq “ αBpu,wq ` βBpv, wq; and

(b) Bpu, αv ` βwq “ ασBpu, vq ` βσBpu,wq.
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If σ is the identity mapping then we say B is a bilinear form. We call B symmetric if Bpu, vq “ Bpv, uq

for all u, v P V . We call B alternating if Bpv, vq “ 0 for all v P V .

A bilinear form B is called reflexive if for all u, v P V we have Bpu, vq “ 0 if and only if Bpv, uq “ 0.

We assume bilinear forms are reflexive unless otherwise stated.

Definition 2.20

A quadratic form on V is a function ϕ : V Ñ F such that the following hold:

(a) ϕpαvq “ α2ϕpvq for all α P F and v P V ; and

(b) the function B : V ˆ V Ñ F defined by the equation

Bpu, vq “ ϕpu` vq ´ ϕpuq ´ ϕpvq (2.1)

is a symmetric bilinear form.

The bilinear form obtained from a quadratic form ϕ by Equation (2.1) is called the polar form

of ϕ. We say ϕ polarises to B. If charpFq is odd then Equation (2.1) implies ϕpvq “ 1
2Bpv, vq for

all v P V and therefore there is a unique correspondence between each quadratic form and its polar

form. If charpF q “ 2, however, this does not hold; there are generally multiple quadratic forms which

polarise to the same symmetric bilinear form. The eccentricities of quadratic forms in characteristic

two are discussed further in Chapter 3.

A pair of vectors u, v P V satisfying Bpu, vq “ 0 is said to be orthogonal. Let U be a subspace of

V . The subset of V defined by

UK “ tv P V | Bpu, vq “ 0 for all u P Uu

is called the orthogonal complement of U with respect to B.

Lemma 2.21 ([42], pg. 52)

Let V be an n´dimensional vector space over a field F and let U b3 a k´dimensional subspace of V .

Then UK is an pn´ kq-dimensional subspace of V .

Definition 2.22

Let V be a vector space equipped with a bilinear form B. Then B is nondegenerate if V K “ t0u.

Definition 2.23

Let V be a vector space equipped with a sesquilinear form B. A similarity of B is an invertible linear

transformation g P GLpV q for which there exists a scalar λg P Fzt0u such that Bpug, vgq “ λgBpu, vq

for all u, v P V . A similarity of ϕ is an invertible linear transformation g P GLpV q for which there

exists a scalar λg P Fzt0u such that ϕpvgq “ λgϕpvq for all v P V . A similarity with λ “ 1 is called an

isometry of B (or ϕ).
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If there exists an isometry between a pair of quadratic or sesquilinear forms then we will say they

are isometric. The following theorem characterises nondegenerate reflexive sesquilinear forms. It is

sometimes referred to as the ‘Birkhoff-von Neumann Theorem’, though it was published by Richard

Brauer in 1936 [47].

Theorem 2.24 ([47])

Let V be a vector space with dimpV q ě 3 and let B be a nondegenerate and reflexive σ-sesquilinear

form on V . Then one of the following holds:

(a) B is alternating: σ “ 1 and Bpv, vq “ 0 for all v P V ;

(b) B is symmetric: σ “ 1 and Bpu, vq “ Bpv, uq for all u, v P V ; or

(c) B is Hermitian: σ2 “ 1, σ ‰ 1 and Bpu, vq “ Bpv, uqσ for all u, v P V .

Definition 2.25

Let J be an n ˆ n matrix with entries in F. The function V ˆ V Ñ F defined by Bpu, vq “ uJvT is

a bilinear form on V “ Fn. Conversely, for any bilinear form B defined on a vector space with basis

B “ te1, . . . , enu, the matrix J defined by Jij “ Bpei, ejq satisfies Bpu, vq “ uJvT . The matrix J is

called the Gram matrix for B with respect to B.

Definition 2.26

Let V be a vector space equipped with either a bilinear form B or quadratic form ϕ.

(a) A vector v P V is ϕ´singular if ϕpvq “ 0.

(b) A subspace U ď V is ϕ´totally singular if ϕpvq “ 0 for all v P U .

(c) A subspace U ď V is B´totally isotropic if U ď UK.

(d) A pair of nonzero vectors u, v P V zt0u is called a hyperbolic pair if Bpu, vq “ 1 and Bpu, uq “

Bpv, vq “ 0.

Totally isotropic subspaces are sometimes called totally singular in the literature. When working

with fields of even characteristic it is necessary to differentiate between singular and isotropic spaces

as a subspace might be totally isotropic with respect to B but not totally singular with respect to

a polar form ϕ. On the other hand, Equation (2.1) implies that a totally-singular subspace is also

totally-isotropic.

Lemma 2.27 ([48], pg. 46)

Let V “ Fmq . We have the following:

(a) The number of d-dimensional subspaces in V is

Ndpm, qq “
d´1
ź

i“0

qm´i ´ 1

qi`1 ´ 1
(2.2)
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(b) If V is equipped with a nondegenerate symplectic form then m “ 2n and the number of d-

dimensional totally isotropic subspaces in V is

d´1
ź

i“0

q2pn´iq ´ 1

qi`1 ´ 1
(2.3)

(c) If V is equipped with a nonsingular ε-type quadratic form and m “ 2n, then the number of

d-dimensional totally singular subspaces in V is

Ndpn, qq
śn´1
n´dpq

i ` 1q if ε “ `

Ndpn´ 1, qq
śn
n´d`1pq

i ` 1q if ε “ ´
(2.4)

Theorem 2.28 (Witt’s Theorem [42], pg. 57)

Let V be a vector space equipped with a bilinear form B. If U is a subspace of V and g : U Ñ V is

a linear isometry then g can be extended to an isometry g : V Ñ V such that g|U “ g if and only if

pU X V Kqg “ Ug X V K. In particular, if U and W are subspaces of V and g : U Ñ W is an isometry

then g may be extended to an isometry of V .

Witt’s Theorem implies that the maximally totally isotropic (and totally singular) subspaces with

respect to a particular form have the same dimension. This dimension is called the Witt index of the

form. Note that the Witt index is at most dimpV q{2, since Lemma 2.21 implies dimpV q “ dimpW q `

dimpWKq for any subspace W .

Theorem 2.29 ([38], pg. 24)

Let V be a 2n-dimensional vector space over Fq equipped with a symplectic form B. Then there exists

a basis B “ te1, f,1 , e2, f2, . . . , en, fnu for V such that Bpei, eiq “ Bpfi, fiq “ 0 and Bpei, fjq “ δij for

all integers i, j satisfying 1 ď i, j ď n. Moreover, there is a unique isometry class of such forms on V .

Theorem 2.30 ([38], pg. 22)

Let V be a m-dimensional vector space over Fq equipped with a nondegenerate Hermitian form B.

Then q is a square and there exists a basis

B “

#

te1, f1, . . . , en, fnu if m “ 2n

te1, f1, . . . , en, fn, vu if m “ 2n` 1
(2.5)

for V such that Bpei, fjq “ δij , Bpei, ejq “ Bpfi, fjq “ Bpei, vq “ Bpfi, vq “ 0 and Bpv, vq “ 1.

Theorem 2.31 ([38], pg. 27)

Let V be a m-dimensional vector space over Fq equipped with a nonsingular quadratic form ϕ. Let B

denote the polar form of ϕ. Then there exists a basis B for V satisfying

(a) B “ tei, fi | 1 ď i ď nu, where ϕpeiq “ ϕpfiq “ 0 for 1 ď i ď n´ 1, Bpei, fjq “ δij and one of the

following holds:

(i) Hyperbolic type (`): ϕpenq “ ϕpfnq “ 0, giving Witt index n;
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Type Condition Example
Zero Bilinear Bpv, v1q “ 0

Symplectic Bilinear dimpvq “ 2n Bpv, v1q “
řn
i“1pxiy

1
i ´ yix

1
iq

Hyperbolic Quadratic dimpV q “ 2n ϕpvq “
řn
i“1 xiyi

Elliptic Quadratic dimpV q “ 2n, λ P Fˆq ϕpvq “
řn´1
i“1 xiyi ` x

2
n ` λy

2
n

Parabolic Quadratic dimpV q “ 2n` 1, λ P Fˆq ϕpvq “
řn
i“1 xiyi ` λxn`1

Hermitian Sesquilinear dimpV q “ 2n, q square Bpv, v1q “
řn
i“1pxix

1
?
q

i ` yiy
1
?
q

i q

dimpV q “ 2n` 1, q square Bpv, v1q “
řn
i“1pxix

1
?
q

i ` yiy
1
?
q

i q ` xn`1x
1
?
q

n`1

Table 2.1. Representatives for the isometry classes of classical forms

(ii) Elliptic type (´): ϕpenq “ 1 and ϕpfnq “ µ where x2 ` x ` µ is irreducible over F, giving

Witt index n´ 1.

(b) Parabolic type (˝): B “ tei, fi, w | 1 ď i ď nu, where ϕpeiq “ ϕpfiq “ 0 for 1 ď i ď n ´ 1,

Bpei, fjq “ δij and ϕpwq “ 1.

Let v “
řn
i“1pxiei ` yifiq or

řn
i“1pxiei ` yifiq ` xn`1en`1 depending on whether dimpV q is even

or odd, and define v1 P V similarly. Examples of the forms introduced in this section are provided in

Table 2.3 using the bases from Theorems 2.29, 2.30 and 2.31.

Lemma 2.32

Let V be a vector space equipped with a nondegenerate symplectic form B. Suppose V “ ‘ti“1Vi

where each Vi is nondegenerate with respect to B. For each integer i such that 1 ď i ď t, let ϕi denote

a quadratic form on Vi polarising to B|Vi . Then there exists a unique quadratic form ϕ on V such

that ϕ|Vi “ ϕi for all 1 ď i ď t.

Proof. We proceed by induction on t. If t “ 1 then the result is obvious. Suppose t ą 1 and the

result is true for t ´ 1. Let W “ ‘
t´1
i“1Vi and V “ W ‘ Vt. By induction there exists a unique form

ϕ1 on W polarising to B|W such that for all 1 ď i ď t ´ 1 we have ϕ1|Vi “ ϕi. Suppose ϕ|W “ ϕ1,

ϕ|Vt “ ϕt and ϕ polarises to B. For all x P V “ W ‘ Vt we have x “ w ` v for unique w P W and

v P Vt and

ϕpxq “ ϕpw ` vq “ ϕpwq ` ϕpvq `Bpw, vq “ ϕ1pwq ` ϕtpvq `Bpw, vq. (2.6)

Therefore we define ϕ uniquely by Equation (2.6), for all x “ w ` v P V . We check that ϕ has the

desired properties:

ϕ|W pwq “ϕpw ` 0q “ ϕ1pwq

ϕ|Vtpvq “ϕp0` vq “ ϕtpvq.
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Form Isometry Group Name
Zero Bilinear GLnpqq Linear

Symplectic Bilinear Sp2npqq Symplectic
Hermitian Sesquilinear GUnpqq Unitary
Hyperbolic Quadratic GO`2npqq Hyperbolic orthogonal

Elliptic Quadratic GO´2npqq Elliptic orthogonal
Parabolic Quadratic GO˝2n`1pqq Parabolic orthogonal

Table 2.2. Isometry groups of the classical forms

Finally, we show that ϕ polarises to B. For i “ 1, 2 let xi “ wi ` vi, where wi PW and vi P Vt

ϕpx1 ` x2q ` ϕpx1q ` ϕpx2q “ϕpw1 ` v1 ` w2 ` v2q ` ϕpw1 ` v1q ` ϕpw2 ` v2q

“ϕ1pw1 ` w2q ` ϕtpv1 ` v2q `Bpw1 ` w2, v1 ` v2q

` ϕ1pw1q ` ϕtpv1q `Bpw1, v1q ` ϕ
1pw2q ` ϕtpv2q `Bpw2, v2q

“B|W pw1, w2q `B|Vtpv1, v2q `Bpw1 ` w2, v1 ` v2q

`Bpw1, v1q `Bpw2, v2q

“Bpw1, w2q `Bpv1, v2q `Bpw1, v2q `Bpw2, v1q

“Bpw1 ` v1, w2 ` v2q

“Bpx1, x2q.

Therefore ϕ is the unique quadratic form on V which polarises to B. �

The majority of this thesis is concerned with actions of the so called classical groups.

Definition 2.33

Let f be a σ-sesquilinear or quadratic form. The isometry group of f is the set of isometries under

composition.

The isometry groups of the classical forms appearing in Table 2.3 and the related classical groups

are summarised below in Table 2.3.

Of course, the ‘zero form’ defined by Bpu, vq “ 0 for all u, v P V is degenerate. Consider the

following chain of groups

Ω ď S ď G ď Γ ď A. (2.7)

Here, G denotes the isometry group of a nondegenerate reflexive sesquilinear form. The special group

S is the subgroup of G consisting of determinant 1 matrices. The group Ω generally corresponds to the

derived subgroup of S, though if G “ GOpm, 2eq then Ω related to the spinor norm (see [42], Chapter

11 for more details). The conformal group C is the group of similarities and the semilinear group Γ

is the group of semi-similarities. Finally, A generally corresponds to the automorphism group of Ω;

exceptions are noted in [39], Theorem 1.6.21. A classical group is a group H satisfying Ω ď H ď A

for a nondegenerate reflexive sesquilinear form. We follow [39] and refer informally to any group H

satisfying Ω Ĳ H ď A with respect to Equation (2.7) as a classical group. Table 2.3 appears in [39]

and provides a useful summary of notation.
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Case Ω S G C Γ A
L SLnpqq SLnpqq GLnpqq GLnpqq ΓLnpqq ΓLnpqq ¸ xτy
U SUnpqq SUnpqq GUnpqq CGUnpqq CΓUnpqq CΓUnpqq
S Spnpqq Spnpqq Spnpqq CSpnpqq CΓSpnpqq CΓSpnpqq
O Ωεnpqq SOε

npqq GOε
npqq CGOε

npqq CΓOε
npqq CΓOε

npqq
Table 2.3. Notation for the classical groups

The associated projective groups are obtained as the quotient of a given group by its subgroup of

scalar matrices. The projective notation is obtained by appending P to the beginning of the notation

appearing in Table 2.3.



CHAPTER 3

The Jordan-Steiner actions

The symplectic group Sp2np2q has a pair of 2-transitive actions of degrees 2n´1p2n ˘ 1q, which

we refer to as the Jordan-Steiner actions. Chapter 3 provides an introduction to the Jordan-Steiner

actions. We refer the reader to Section 7.7 of [32] for further details on the Jordan-Steiner actions and

to [49, 50, 51] for some applications to coding and design theory. The submodule structure of the

associated permutation modules is studied in [52].

3.1. The Jordan–Steiner Actions

Let V be a 2n-dimensional vector space over F2. Denote by B the set of alternating bilinear forms

on V and by Q the set of quadratic forms on V . It is shown in [53, Proposition 1] that B and Q are

vector spaces over F2 of respective dimensions 2n2 ` n and 2n2 ´ n, with addition defined pointwise.

The mapping θ : Q Ñ B associates with each ϕ P Q an alternating bilinear form B P B defined by

Bpx, yq “ ϕpx` yq ´ ϕpxq ´ ϕpyq. (3.1)

Equation (3.1) is called the polarisation equation. As discussed in [53], θ is a surjective linear trans-

formation and kerpθq is the vector space of of all linear transformations from V to F2. We now fix

a particular nondegenerate alternating form, which we denoted by B : V ˆ V Ñ F2. For brevity we

shorten the phrase ‘nondegenerate alternating bilinear form’ to ‘symplectic form’. Let Q denote the

set of all quadratic forms on V which satisfy Equation (3.1). Denote by X “ Sp2np2q the full isometry

group of B. Given ϕ P Q and g P X, we define a function ϕg : V Ñ F2 by

ϕgpxq “ ϕpxg´1q. (3.2)

It is routine to verify that (3.2) defines a group action of X on Q. For each ε P t˘u we denote by Qε

the set of all ε-type quadratic forms on V which polarise to B.

Theorem 3.1 ([32], Section 7.7)

Let V be a 2n-dimensional vector space over F2 equipped with a symplectic form B. For each ε P t˘u

the group X “ Sp2np2q acts 2-transitively on Qε.

The 2-transitive actions of X on Q` and Q´ are called the Jordan-Steiner actions.

Lemma 3.2

Let ϕ P Q and g P X. If J is a Gram matrix for ϕ with respect to some ordered basis for V , then

g´1Jg´T is a Gram matrix for ϕg with respect to the same basis.

25
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Proof. By definition we have

ϕgpxq “ ϕpxg´1q “
`

xg´1
˘

J
`

xg´1
˘T
“ x

`

g´1Jg´T
˘

xT

therefore g´1Jg´T is a Gram matrix for ϕg. �

3.2. Relative coordinates for the Jordan-Steiner actions

The symplectic group Sp2np2q is isomorphic to the orthogonal group GO2n`1p2q [42]. In Section 3.2 we

construct a permutational isomorphism between the Jordan-Steiner actions of Sp2np2q and an action

of GO2n`1p2q on a subset of 2n-dimensional subspaces of F2n`1
2 . Let rV “ F2n`1

2 equipped with basis

B “ te1, . . . , en, f1, . . . , fn, en`1u. Consider the quadratic form Φ : rV Ñ F2 defined by

Φpxq “
n
ÿ

i“1

xiyi ` xn`1 (3.3)

for all x “
řn
i“1pxiei` yifiq`xn`1en`1 P rV . Denote the polar form of Φ by rB. Note that Bpei, fjq “

δij , Φpeiq “ Φpfiq “ 0 for 1 ď i ď n and Φpen`1q “ 1. The alternating form rBpx, yq is degenerate with

radical rV K “ xen`1y.

Lemma 3.3

Let rV be a vector space over Fq equipped with a bilinear form rB : rV ˆ rV Ñ Fq. Let V “ rV {rV K. Then

the mapping B : V ˆ V Ñ Fq defined by

Bpu` rV K, v ` rV Kq “ rBpu, vq (3.4)

is a nondegenerate bilinear form on V .

Proof. If rV K “ t0u then the statement is trivial. Suppose rB is degenerate. First we show that B

is well defined. Let u, u1, v, v1 P rV such that u1 “ u` rV K and v1 “ v` rV K. Then there exists c, d P rV K

such that u1 “ u` c and v1 “ v ` d. Since c, d P rV K, we have

Bpu1 ` rV K, v1 ` rV Kq “ rBpu1, v1q

“ rBpu` c, v ` dq

“ rBpu, vq ` rBpu, dq ` rBpc, vq `Bpc, dq

“ rBpu, vq

“ Bpu` rV K, v ` rV Kq.

In particular, B is well defined. Bilinearity of B follows directly from bilinearity of rB. Finally, let

w P rV . Then Bpw ` rV K, v ` rV Kq “ 0 for all v P rV if and only if rBpw, vq “ 0 for all v P rV , that is, if

and only if w P rV K. Therefore B is nondegenerate. �

Definition 3.4

Consider the vector space rV “ F2n`1
2 equipped with the quadratic form Φ as defined in Equation (3.3).
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Let rB denote the polar form of Φ. A hyperplane H ă rV is called complementary if H X rV K “ t0u.

We denote by rQ the set of all 22n complementary hyperplanes in rV .

Lemma 3.5

For all H P rQ, the restriction π|H : H Ñ V is an isomorphism of vector spaces, with inverse defined

by

π|´1
H pv `

rV Kq “

#

v if v P H

v ` ren`1 if v R H
(3.5)

Proof. For all v P rV , exactly one of v and v ` ren`1 lies in H. Therefore Equation (3.5) is a well

defined inverse for π|H . Linearity of π|H follows from the fact that π is linear. Therefore π|H is a

vector space isomorphism. �

Lemma 3.6

For all H P rQ, the mapping ϕ : V Ñ F2 defined by

ϕ “ Φ ˝ π|´1
H (3.6)

is a quadratic form on V which polarises to B.

Proof. For convenience we rewrite equation (3.3) as Bpx, yq “ rBpπ|´1
H pxq, π|

´1
H pyqq, where x, y P

V . Then for all x, y P V

ϕpx` yq “ Φ ˝ π|´1
H px` yq

“ Φpπ|´1
H px` yqq

“ Φpπ|´1
H pxq ` π|

´1
H pyqq since π|´1

H is linear

“ Φpπ|´1
H pxqq ` Φpπ|´1

H pyqq `
rBpπ|´1

H pxq, π|
´1
H pyqq by Equation (3.1)

“ Φ ˝ π|´1
H pxq ` Φ ˝ π|´1

H pyq `Bpx, yq

“ ϕpxq ` ϕpyq `Bpx, yq.

Therefore ϕ is a quadratic form on V which polarises to B. �

Lemma 3.7

The map µ : rQÑ Q defined by µpHq “ Φ ˝ π|´1
H is a bijection.

Proof. Let H,H 1 P rQ. Then µpHq “ µpH 1q if and only if

Φpπ|´1
H pxqq “ Φpπ|´1

H1 pxqq for all x P V. (3.7)
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Let x “ v ` rV K for some v P rV . Let χH be the indicator function defined by

χHpvq “

$

&

%

1 if v R H

0 if v P H

for v P rV . Recall that rV K “ xen`1y. Then we have π|´1
H pxq “ v ` χHpvqen`1. Expanding the left

hand side of equation (3.7), we have

Φpπ|´1
H pxqq “ Φpv ` χHpvqen`1q

“ Φpvq ` ΦpχHpvqen`1q ` rBpv, χHpvqen`1q

“ Φpvq ` χHpvqΦpen`1q ` χHpvq rBpv, en`1q

and therefore

Φpπ|´1
H pxqq ` Φpπ|´1

H1 pxqq “Φpvq ` χHpvqΦpen`1q ` χHpvq rBpv, en`1q`

Φpvq ` χH1pvqΦpen`1q ` χH1pvq rBpv, en`1q

“ pχHpvq ` χH1pvqq
´

Φpen`1q ` rBpv, en`1q

¯

“χHpvq ` χH1pvq,

where the last equality follows from the fact that Φpen`1q “ 1 and en`1 P rV K. Combining the

equation Φpπ|´1
H pxqq`Φpπ|´1

H1 pxqq “ χHpvq`χH1pvq with Equation (3.7), we deduce that Φpπ|´1
H pxqq “

Φpπ|´1
H1 pxqq if and only if v lies in both H and H 1, or v lies in neither. Therefore Φpπ|´1

H pxqq “

Φpπ|´1
H1 pxqq for all x P V if and only if π|´1

H pxq “ π|´1
H1 pxq for all x P V . But π|´1

H pxq “ π|´1
H1 pxq for all

x P V if and only if H “ H 1, therefore µ is injective. Since |Q| “ | rQ|, it follows that µ is a bijection. �

Lemma 3.8

Let µ : rQ Ñ Q denote the bijection defined in Lemma 3.7 and let G “ IsompΦq. Then µ induces a

permutational isomorphism between the subspace action of G on rQ and the induced action of G on Q.

Proof. In view of Lemmas 3.6 and 3.7, it is sufficient to prove that the equation

pΦ ˝ π´1
H q

gpxq “ Φ ˝ π|´1
Hg pxq (3.8)

holds for all H P rQ, x “ v ` rV K P V and g P IsompΦq. Beginning with the left hand side of Equation

(3.8) we have

pΦ ˝ π´1
H q

gpxq “Φpπ´1
H pxg

´1qq

“Φpπ´1
H pvg

´1 ` rV Kqq.

By Equation (3.5) we have

Φ ˝ π|´1
H pvg

´1 ` rV Kq “

#

Φpvg´1q if vg´1 P H

Φpvg´1 ` en`1q if vg´1 R H
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We now use the facts: en`1g “ en`1, vg´1 P H if and only if v P Hg, and Φpvgq “ Φpvq for all v P rV .

From these we deduce

Φ ˝ π|´1
H pvg

´1 ` rV Kq “

#

Φpvq if v P Hg

Φpv ` en`1q if v R Hg
(3.9)

The right hand side of Equation (3.9) is equal to Φ ˝ π|´1
Hg pv `

rV Kq, and therefore Equation (3.8)

holds. �

Recall the following notation from Definition 2.26: for ϕ P Q we denote by singpϕq the set of

ϕ´singular vectors of V . Note that ϕp0q “ 0 for all ϕ P Q and therefore, according to Definition 2.26,

singpϕq contains the zero vector for all ϕ P Q. We denote by singpϕq# the set of nonzero ϕ-singular

vectors in V . Lemma 3.8 allows us to derive useful relationships between elements of Q and their

singular vectors.

Lemma 3.9

For every ϕ0, ϕ P Q there exists a unique vector c P V such that the following equation holds for all

x P V

ϕpxq “ ϕ0pxq `Bpx, cq. (3.10)

Conversely, for all c P V and ϕ0 P Q, equation (3.10) defines an element of Q. Moreover,

singpϕq “

#

singpϕ0q ` c if c P singpϕ0q

V zpsingpϕ0q ` cq if c R singpϕ0q
(3.11)

Proof. If ϕ “ ϕ0 then, since B is nondegenerate, c “ 0 is the unique vector for which Equation

(3.10) holds. Suppose that ϕ ‰ ϕ0 and let H0 “ µ´1pϕ0q and H “ µ´1pϕq denote the corresponding

complementary hyperplanes in rV , where µ : H ÞÑ Φ ˝ π|´1
H . Lemma 3.7 implies H0 ‰ H. The

intersection S “ H0 X H is a p2n ´ 1q´dimensional subspace in rV which avoids rV K, and thus πpSq

is a hyperplane in V . Therefore, πpSq “ xcyK for a unique non-zero c P V , and ϕ0, ϕ coincide

precisely on πpSq. Therefore ϕpxq ‰ ϕ0pxq if and only if x R xcyK, in which case Bpx, cq “ 1 and

ϕpxq “ ϕ0pxq ` Bpx, cq. Thus for all x, ϕ0pxq and ϕpxq differ by Bpx, cq and hence Equation (3.10)

holds.

Conversely, let c P V , φ0 P Q and let ϕ be defined by Equation (3.10). Noting that ´1 “ 1 in F2,

for all x, y P V we have

φpx` yq ´ φpxq ´ φpyq “φ0px` yq `Bpx` y, cq ` φ0pxq `Bpx, cq ` φ0pyq `Bpy, cq

“φ0px` yq ` φ0pxq ` φ0pyq

“Bpx, yq.

Thus φ defines a quadratic form which polarises to B, that is, φ P Q. Finally, consider singpφq “ ty P

V | φ0pyq`Bpy, cq “ 0u. Suppose c P singpφ0q. Let y P singpφ0q`c, so y “ x`c for some x P singpφ0q.



30 3. THE JORDAN-STEINER ACTIONS

Then by Equation (3.10)

φpyq “φ0px` cq `Bpx` c, cq

“φ0pxq ` φ0pcq `Bpx, cq `Bpx, cq `Bpc, cq

“0

so singpφ0q ` c Ď singpφq. Similarly, if y P singpφq then

φ0py ` cq “φ0pyq ` φ0pcq `Bpy, cq

“φ0pyq `Bpy, cq

“φpyq

“0,

and hence y “ py` cq ` c P singpφ0q ` c. Thus Equation (3.11) holds in this case. A similar argument

yields Equation (3.11) when c R singpφ0q. �

If φ0 is fixed and ϕpxq “ ϕ0pxq `Bpx, cq for for all x P V then we will write ϕ “ ϕc. Note that ϕc

and ϕ0 agree on xcyK, since x P xcyK precisely when Bpx, cq “ 0.

Lemma 3.10

For each ϕ0 P Qε the function λϕ0
: V Ñ Q defined by λϕ0

pcq “ ϕc induces a permutational iso-

morphism between the actions of Xϕ0
on V and Q. In particular, the image of singpϕ0q under λϕ0

is

Qε.

Proof. Lemma 3.9 implies that λϕ0 is a bijection. Let φ0 P Q, c P V and g P Xϕ0 . Then for all

x P V we have

ϕgcpxq “ϕcpxg
´1q “ ϕ0pxg

´1q `Bpxg´1, cq “ ϕg0pxq `Bpx, cgq

“ϕ0pxq `Bpx, cgq “ ϕcgpxq.

Thus pϕcq
g “ ϕcg. Therefore, for all c P V , we have λϕ0

pcqg “ pϕcq
g “ ϕcg “ λϕ0

pcgq. By Lemma 3.9,

λϕ0
maps elements of singpϕ0q into Qε and since [54, Theorem 1.41] gives | singpϕ0q| “ |Qε|, it follows

that λϕ0
induces a bijection from singpϕ0q to Qε. �

Corollary 3.11

The action of X on Q is permutationally isomorphic to the action of X on the collection tsingpϕq Ă

V | ϕ P Qu.

Proof. This should not be surprising since each quadratic form in Q is uniquely determined by

its singular vectors. However, we show directly that for all g P X we have

singpϕgq “ tx P V | ϕgpxq “ 0u “ tx P V | ϕpxg´1q “ 0u

“ txg P V | ϕpxq “ 0u “ singpϕqg.
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�

Corollary 3.12

Let ϕ0, ϕd P Q with d P V . Let c P V . For all g P X, if ϕg0 “ ϕd then ϕgc “ ϕcg`d.

Proof. For all ϕc P Q and g P X satisfying ϕg0 “ ϕd we have

ϕgcpxq “ϕ0pxg
´1q `Bpxg´1, cq

“ϕdpxq `Bpx, cgq

“ϕ0pxq `Bpx, cg ` dq

so ϕgc “ ϕcg`d as claimed. �

Note that if g P Xϕ0
then Corollary 3.12 reduces to ϕgc “ ϕcg, as in Lemma 3.10.

Lemma 3.13

For all ϕ0, ϕc P Q we have singpϕ0q X singpϕcq “ singpϕ0q X xcy
K, and if φ0 P Qε with ε P t`,´u then

| singpϕ0q X singpϕcq| “

#

2n´1p2n´1 ` εq if c P singpϕ0q

22n´2 if c R singpϕ0q

Proof. If x P singpϕ0q then ϕcpxq “ ϕ0pxq`Bpx, cq “ Bpx, cq. Therefore x P singpϕ0qX singpϕcq

if and only x P singpϕ0q X xcy
K. Let ϕ P Q and c P V . Then for all g P X we have

psingpϕq X xcyKqg “ txg P V | ϕpxq “ 0 and Bpx, cq “ 0u

“ tx P V | ϕpxg´1q “ 0 and Bpxg´1, cq “ 0u

“ tx P V | ϕgpxq “ 0 and Bpx, cgq “ 0u

“ singpϕgq X xcgyK. (3.12)

Since X acts transitively on Qε, Equation (3.12) implies that in order to determine the cardinality of

singpϕ0qX xcy
K, we may choose the most convenient form φ0 P Qε for our computations. Further, Xϕ0

acts transitively on Qεztϕ0u and [35, subcase 3.2.4e] implies Xϕ0
acts transitively on Q´ε, therefore the

cardinality of | singpϕ0qX xcy
K| depends only on whether or not c P singpϕ0q. Therefore, we let tei, fi |

1 ď i ď nu be a symplectic basis for V and, without loss of generality, for all x “
řn
i“1pxiei`yifiq P V

we define φ0 P Qε by

ϕ0pxq “

#

řn
i“1 xiyi if ε “ `

xn ` yn `
řn
i“1 xiyi if ε “ ´

With x “
řn
i“1pxiei ` yifiq, consider the following subcases:
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(a) If c “ e1 then ϕ0pcq “ 0 and xcyK “ xei, fj | 1 ď i ď n, 2 ď j ď ny. If x P xcyK then y1 “ 0 and

therefore | singpϕ0q X xcy
K| is the number of vectors in xcyK for which

n
ÿ

i“2

xiyi “ 0, if ε “ `

n
ÿ

i“2

xiyi ` xn ` yn “ 0, if ε “ ´.

In particular, since x1 P F2, | singpϕ0q X xcy
K| is twice the number of ε-type quadratic forms

which polarise to a symplectic form on a p2n ´ 2q-dimensional vector space over F2. That is,

| singpϕ0q X xcy
K| “ 2n´1p2n´1 ` εq.

(b) If c “ e1 ` f1 then ϕ0pcq “ 1 and xcyK “ xe1 ` f1, ei, fi | 2 ď i ď ny. If x P xcyK then x1 “ y1 “ λ

and | singpϕ0q X xcy
K| is the number of vectors for which

n
ÿ

i“2

xiyi ` λ “ 0, if ε “ ` (3.13)

n
ÿ

i“2

xiyi ` xn ` yn ` λ “ 0, if ε “ ´. (3.14)

If λ “ 0 then equations (3.13) and (3.14) have 2n´2p2n´1 ` εq solutions. If λ “ 1 then equations

(3.13) and (3.14) have 22pn´1q ´ 2n´2p2n´1 ` εq solutions. Upon summing these values, we find

| singpϕ0q X xcy
K| “ 22n´2.

This completes the proof. �



CHAPTER 4

Reducible codeword stabilisers

Problem: Let G be a reducible subgroup of X “ Sp2np2q. Classify the X-strongly incidence

transitive codes Γ Ă
`Qε
k

˘

with X∆ – G for all ∆ P Γ.

4.1. Introduction

Let V “ pF2n
2 , Bq be a symplectic vector space and let X – Sp2np2q be the isometry group of the

symplectic form B. We denote by Qε the set of all ε-type quadratic forms on V which polarise

to B. In Chapter 4 we classify the strongly incidence-transitive codes with point set Qε under the

assumption that the stabiliser G of a codeword fixes a nontrivial proper subspace of V . By Theorem

2.31, we may choose a basis te1, f1, . . . , en, fnu for V such that if x, x1 P V with x “
řn
i“1pxiei ` yifiq

and x1 “
řn
i“1px

1
iei ` y

1
ifiq then

Bpx, x1q “
n
ÿ

i“1

xiy
1
i ` yix

1
i.

In particular, Bpei, ejq “ Bpfi, fjq “ 0 for all i, j P r1 : ns, and Bpei, fjq “ 1 if i “ j and 0 otherwise.

We refer to te1, f1, . . . , en, fnu as a symplectic basis. We open with some descriptions of codes whose

codeword stabilisers act reducibly on V .

Construction 4.1

Choose ε, ε1 P t`,´u and n, d P Z, with n ě 2 and 1 ď d ď n ´ 1. We construct a family of codes

Γpn, d, ε, ε1q in JpQε, kq as follows. Let V “ pF2n
2 , Bq be a symplectic space. For each 2d-dimensional

nondegenerate subspace U , define a codeword ∆pUq whose elements are all quadratic forms φ P Qε

such that ϕ|U is of type ε1 and ϕ|UK is of type εε1. We have, k “ |X : XU | “ 2np2d ` ε1qp2n´d ` εε1q.

Construction 4.2

Choose ε P t`,´u, c “ 0 or 1 and n, d P Z with n ě 2, 1 ď d ď n and pd, εq ‰ pn,´q. We construct

a family of codes Γpn, d, ε, cq in JpQε, kq as follows. Let V “ pF2n
2 , Bq be a symplectic space. For each

d-dimensional totally-isotropic subspace U we define a codeword ∆pUq “ tφ P Qε | dimpsingpφqXUq “

d´ cu. We have k “ |X : XU | “ 2n´1p2n´d ` εq.

Our main theorem for Chapter 4 is as follows.

Theorem 4.3 (Main Theorem)

Let Γ be a code in JpQε, kq, where |Qε
| ě 4 and 3 ď k ď |Qε| ´ 3. Suppose that X “ Sp2np2q “

33
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AutpΓqXSympQεq. Let ∆ be a codeword and suppose that the stabiliser of ∆ is a geometric subgroup

of Sp2np2q. Then Γ is X-strongly incidence-transitive if and only if it arises from Construction 4.1 or

4.2.

Remark 4.4

If Γ is a nonempty subset of
`Qε
k

˘

with k P t1, 2, |Qε| ´ 1, |Qε| ´ 2u then we may deduce from the fact

that X acts 2-transitively on Qε that Γ “
`Qε
k

˘

. We consider these examples trivial and therefore we

set 3 ď k ď |Qε| ´ 3 in Theorem 4.3.

4.2. Stabiliser of a nondegenerate subspace

Let V “ pF2n
2 , Bq be a symplectic vector space and let U be a nontrivial proper nondegenerate subspace

of V of dimension 2d. Note that U is nondegenerate if and only if UK is nondegenerate, so without

loss of generality we may assume that dimpUq ď n. We denote the setwise stabiliser of U by XU . By

[38, pg. 84], we have XU – SppUq ˆ SppUKq. Theorem 1.18 states that XU is a maximal subgroup of

X unless dimpUq “ n; for if dimpUq “ n then SppUq ˆ SppUKq ă pSppUq ˆ SppUKqq ˆ Z2 ă Sp2np2q,

where the order 2 element in Z2 swaps U and UK. The subgroup pSppUq ˆ SppUKqq ˆ Z2 is maximal

in Sp2np2q. Recall that a subspace U ď V is nondegenerate if and only if V “ U ‘ UK. If U is

nondegenerate then dimpUq is even and we usually write dimpUq “ 2d for some 1 ď d ď n ´ 1. If U

is a nondegenerate subspace of V then BU denotes the restriction of B to U ˆ U . If φ P Qε then φU

denotes the restriction of φ to U . We denote by Qε
U the set of all Boolean quadratic forms on U which

polarise to BU .

Definition 4.5

Let U and W be nondegenerate subspaces of V with U XW “ t0u.

(a) For each v, v1 P U ‘W with v “ u` w and v1 “ u1 ` w1 we define B “ BU ‘BW by

Bpv, v1q “ BU pu, u
1q `BW pw,w

1q.

(b) For each v P U ‘W with v “ u` w we define φ “ φU ‘ φW by

φpvq “ φU puq ` φW pwq.

Lemma 4.6

Let U and W be nondegenerate subspaces of U with U XW “ t0u. Let pφU , φW q P Qε
U ˆQε1

W and let

BU and BW denote the polar forms of φU and φW . Then φU ‘ φW is a quadratic form of type εε1 on

U ‘W which polarises to BU ‘BW .

Proof. Follows from [38, Proposition 2.5.11]. �



4.3. STABILISER OF A TOTALLY ISOTROPIC SUBSPACE 35

Lemma 4.7

The setwise stabiliserXU consists of all block diagonal matrices with diagonal pA,Bq P SppUqˆSppUKq.

Proof. Let te1, f1, . . . , ed, fdu be an ordered basis for U and let ted`1, fd`1, . . . , en, fnu be an

ordered basis for UK. When written with respect to the bases above, the elements of GL 2np2q which

stabilise U setwise are block diagonal with blocks pR,Sq P GL2dp2q ˆGL2pn´dqp2q. The Gram matrix

J for B is block diagonal with n blocks of the form

˜

0 1

1 0

¸

. Let JU denote the Gram matrix for the

restriction BU , and similarly for UK. Invoking the requirement that M “ pR,Sq P Sp2np2q, which can

be written as MJMT “ J , we have
˜

R O

O S

¸˜

JU O

O JUK

¸˜

RT O

O ST

¸

“

˜

RJURT O

O SJUKST

¸

“

˜

JU O

O JUK

¸

. (4.1)

Equation (4.1) holds if and only if pR,Sq P Sp2dp2q ˆ Sp2pn´dqp2q. �

Proposition 4.8

Choose ε, ε1 P t`,´u, n ě 2 and let U be a 2d-dimensional nondegenerate subspace of V “ F2n
2

with 1 ď d ď n ´ 1. Let ∆ “ tϕ P QεpV q | ϕU P Qε1

Uu. Then XU is transitive on ∆ ˆ ∆ and

thus the output of Construction 4.1 is an X-strongly incidence-transitive code in JpQε, kq with k “

2n´2p2d ` ε1qp2n´d ` εε1q.

Proof. Let U be a non-degenerate subspace of V so that V “ U‘UK and XU – SppUqˆSppUKq.

Lemmas 4.6 and 2.32 imply that for all ϕ P Qε there exist unique pϕU , ϕUKq P Qε1

U ˆQεε1

UK such that

ϕ “ ϕU ‘ ϕUK . Since SppUq and SppUKq act transitively in their respective Jordan-Steiner actions

on Qε1

U and Qεε1

UK , it is immediate that XU acts transitively on ∆ˆ∆ for each ε1 P t`,´u. Moreover,

Lemma 1.17 implies that X∆ “ XU . Witt’s Lemma implies X is transitive on the set of nondegenerate

subspaces of V of a given dimension, and therefore taking the orbit of ∆ under the action of X yields

the output of Construction 4.1. Finally, applying the Orbit-Stabiliser Theorem we have

k “ |XU : XU,ϕ| “
|Sp2dp2q|

|GOε1

2dp2q|

|Sp2pn´dqp2q|

|GOεε1

2pn´dqp2q|

“ 2d´1p2d ` ε1q ¨ 2n´d´1p2n´d ` εε1q

“ 2n´2p2d ` ε1qp2n´d ` εε1q.

Therefore the output of Construction 4.1 is an X-strongly incidence-transitive code in JpQε, kq with

k “ 2n´2p2d ` ε1qp2n´d ` εε1q. �

4.3. Stabiliser of a totally isotropic subspace

Let V “ pF2n
2 , Bq be a symplectic vector space and let X “ Sp2np2q. Let U be a totally isotropic

d-dimensional subspace of V , where 1 ď d ď n, and let XU denote the setwise stabiliser of U in X. By

Witt’s Theorem, X acts transitively on the set of totally isotropic d-dimensional subspaces of V and
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therefore the stabilisers of the d-dimensional totally isotropic subspace of V lie in a single conjugacy

class of X. Without loss of generality we may choose a symplectic basis tei, fi | 1 ď i ď nu for V

and then set U “ xei | 1 ď i ď dy. In particular, if x, x1 P V are given by x “
řn
i“1pxiei ` yifiq and

x1 “
řn
i“1px

1
iei ` y

1
ifiq, then

Bpx, x1q “
n
ÿ

i“1

xiy
1
i ` yix

1
i.

In order to prove Theorem 4.3 we will need to investigate the structure of XU and some subgroups in

detail. We begin by calculating the setwise stabiliser of U in coordinates. It is convenient to order our

basis as follows:

B “ te1, . . . , ed, ed`1, fd`1, . . . , en, fn, f1, . . . , fdu. (4.2)

Lemma 4.9

Let V “ pF2n
2 , Bq be a symplectic space and X “ Sp2np2q. Choose d P r1 : ns and set U “ xe1, ¨ ¨ ¨ , edy.

Then the setwise stabiliser XU consists of all 2nˆ 2n matrices M of the form

M “

¨

˚

˝

A 0 0

Y B 0

X Z C

˛

‹

‚

which satisfy the following conditions:

(i) A P GLdp2q,

(ii) B P Sp2pn´dqp2q,

(iii) C “ A´T ,

(iv) XCT ` CXT “ ZJZT , and

(v) CY T “ ZJBT .

where J is the 2pn´ dq ˆ 2pn´ dq block-diagonal matrix with blocks

˜

0 1

1 0

¸

. In particular, C and Y

are determined uniquely by Z, B and A.

Proof. We work with respect to the basis B defined in Equation (4.2). Any matrix M P Sp2np2q

which fixes U necessarily fixes UK “ xe1, ¨ ¨ ¨ , ed, ed`1, fd`1, ¨ ¨ ¨ , en, fny. Therefore M must be of the

form

M “

¨

˚

˝

A 0 0

Y B 0

X Z C

˛

‹

‚

where A and C lie in GLdp2q, B lies in GL2pn´dqp2q, and X, Y and Z are respectively dˆd, 2pn´dqˆd

and dˆ 2pn´ dq matrices. The Gram matrix of B with respect to B is

J “

¨

˚

˝

0 0 Id

0 J 0

Id 0 0

˛

‹

‚
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where Id is a dˆ d identity matrix and J is the 2pn´ dq ˆ 2pn´ dq block-diagonal matrix with blocks
˜

0 1

1 0

¸

. By definition, M P Sp2np2q if and only if MJMT “ J . We have

MJMT “

¨

˚

˝

A 0 0

Y B 0

X Z C

˛

‹

‚

¨

˚

˝

0 0 Id

0 J 0

Id 0 0

˛

‹

‚

¨

˚

˝

AT Y T XT

0 BT ZT

0 0 CT

˛

‹

‚

“

¨

˚

˝

0 0 A

0 BJ Y

C ZJ X

˛

‹

‚

¨

˚

˝

AT Y T XT

0 BT ZT

0 0 CT

˛

‹

‚

“

¨

˚

˝

0 0 ACT

0 BJBT BJZT ` Y CT

CAT CY T ` ZJBT CXT `XCT ` ZJZT

˛

‹

‚

.

Invoking the condition J “MJMT , we have
¨

˚

˝

0 0 Id

0 J 0

Id 0 0

˛

‹

‚

“

¨

˚

˝

0 0 ACT

0 BJBT BJZT ` Y CT

CAT CY T ` ZJBT CXT `XCT ` ZJZT

˛

‹

‚

.

Therefore M P Sp2np2q if and only if conditions (i)-(v) hold. �

Lemma 4.10 below describes the structure of XU as a semidirect product XU “ R ¸ L. This is

called a Levi decomposition with Levi component L and unipotent radical R.

Lemma 4.10 ([38], pg. 93)

Let V “ pF2n
2 , Bq be a symplectic space with basis B and U a totally isotropic d-dimensional subspace

of V . Then there exist subspaces U 1 and W of V such that the following hold:

(a) U 1 is totally isotropic of dimension d, U ‘ U 1 is nondegenerate, W “ pU ‘ U 1qK and V “ pU ‘

U 1q ‘W ,

(b) XU “ R ¸ L, where L fixes setwise each of the subspaces U , U 1 and W , and R acts trivially on

the spaces U , UK{U and V {UK,

(c) L – GLpUq ˆ SppW q.

It is sometimes helpful to view the subspaces W and U 1 as embeddings of the quotient spaces

V {pU ‘ U 1q and V {UK inside V . Working with respect to B, if U “ xei | 1 ď i ď dy then we set

U 1 “ xfi | 1 ď i ď dy and W “ xei, fi | d` 1 ď i ď ny.

Corollary 4.11

Let V “ pF2n
2 , Bq be a symplectic space with basis B and X “ Sp2np2q. Choose d P r1 : ns and set
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U “ xe1, ¨ ¨ ¨ , edy. The Levi component L and the unipotent radical R of XU are given by

L “

$

’

&

’

%

¨

˚

˝

A 0 0

0 B 0

0 0 A´T

˛

‹

‚

| A P GLdp2q, B P Sp2pn´dqp2q

,

/

.

/

-

R “

$

’

&

’

%

¨

˚

˝

Id 0 0

Y I2pn´dq 0

X Z Id

˛

‹

‚

| X `XT “ ZJZT , Y “ JZT

,

/

.

/

-

.

Proof. We have U “ xe1, . . . , edy. Let U 1 “ xf1, ¨ ¨ ¨ , fdy and W “ xed`1, fd`1, ¨ ¨ ¨ , en, fny. It is

clear that property (a) of Lemma 4.10 holds. Suppose M P XU . Then Lemma 4.9 implies

M “

¨

˚

˝

A 0 0

Y B 0

X Z C

˛

‹

‚

“

¨

˚

˝

Id 0 0

Y A´1 I2pn´dq 0

XA´1 ZB´1 Id

˛

‹

‚

¨

˚

˝

A 0 0

0 B 0

0 0 A´T

˛

‹

‚

(4.3)

so XU “ RL and RX L “ tI2nu. Finally RŸXU , so XU – R¸ L. �

4.3.1. The X∆ orbits in Qε for U totally-isotropic

Lemma 4.12

Let V “ pF2n
2 , Bq be a symplectic space with basis B and U a totally isotropic d-dimensional subspace

of V with 1 ď d ď n. Then:

(a) For all ϕ P Qε the intersection singpϕq XU is a subspace of U . Moreover, dimpsingpϕq XUq “ d if

U is ϕ-singular and dimpsingpϕq X Uq “ d´ 1 otherwise.

(b) Define Qε
d :“ tϕ P Qε | U Ď singpϕqu and Qε

d´1 :“ tϕ P Qε | U Ę singpϕqu. Fix ϕ0 P Qε
d and let

c P V . Then ϕc P Qε
d if and only if c P singpϕ0q X U

K.

(c) XU acts transitively on Qε
d.

Proof. We have the following:

(a) Let u, v P U . Since U ď UK we have

ϕpu` vq “ ϕpuq ` ϕpvq `Bpu, vq “ ϕpuq ` ϕpvq. (4.4)

In particular, if u, v P singpϕqXU then Equation (4.4) implies ϕpu`vq “ 0 and therefore singpϕqXU

is a subspace. Moreover, Equation (4.4) implies that the restriction ϕ|U : U Ñ F2 is a linear

transformation and therefore dimpϕpUqq “ 0 or 1, depending on whether or not U is totally

ϕ-singular. In particular, the Rank-Nullity Theorem implies dimpsingpϕq X Uq “ d or d´ 1.

(b) Lemma 3.9 implies c P singpϕ0q. By definition we have

ϕc P Qε
d ô U Ď singpϕcq ô U Ď singpϕ0q ` cô U ` c Ď singpϕ0q.
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But U ` c Ď singpϕ0q if and only if

ϕ0pu` cq “ 0 for all u P U. (4.5)

Expanding Equation (4.5) using the polarisation identity and using the fact that ϕ0puq “ ϕ0pcq “ 0,

we have ϕpu` cq “ Bpu, cq “ 0. Therefore ϕc P Qε
d if and only if c P singpϕ0q X U

K.

(c) For each c P V , the involution τc : V Ñ V defined by xτc “ x ` Bpx, cqc is an element of X (see

[32, Section 7.7]). If c P UK then for all u P U we have uτc “ u ` Bpu, cqc “ u, so τc fixes U

pointwise. Calculating ϕτc we have

ϕτc0 pxq “ ϕ0px`Bpx, cqcq “ ϕ0pxq `Bpx, cqϕ0pcq `Bpx, cq
2 “ ϕ0pxq `Bpx, cq “ ϕpxq. (4.6)

Therefore XU is transitive on Qε
d.

�

Lemma 4.12 implies Qε is the disjoint union of Qε
d and Qε

d´1. If pd, εq “ pn,´q then Q´d is empty;

this case is given extra attention in Section 4.4. Otherwise both Qε
d and Qε

d´1 are nonempty. We will

see in Lemma 4.21 that XU also acts transitively on Qε
d´1.

4.3.2. Maximal parabolic subgroups of orthogonal groups

By [5, Theorem 3.11 and Theorem 3.12], the maximal C1 subgroups of the orthogonal group GOε
pϕq –

GOε
2np2q which stabilise a totally-singular d-subspace U of V have shapeXϕ,U – 2dpd´1q{2.22dpn´dqpGLdp2qˆ

GOε
2pn´kqp2qq. In Section 4.3.2 we describe a subgroup of the maximal parabolic subgroups of Xϕ which

assists in the proof of Lemma 4.22.

Let x be a vector in V with coordinates defined by x “
řn
i“1pxiei ` yifiq. We denote by ϕε0 the

quadratic form

ϕε0pxq “

#

řn
i“1 xiyi if ε “ `,

řn
i“1 xiyi ` x

2
n ` y

2
n if ε “ ´.

(4.7)

The Gram matrix of ϕε0 with respect to the ordered basis B is a 2nˆ 2n matrix

K “

¨

˚

˝

0 0 Id

0 Kε 0

0 0 0

˛

‹

‚

(4.8)

where Kε is the 2pn´ dq ˆ 2pn´ dq matrix

K` “

¨

˚

˚

˚

˚

˚

˚

˚

˝

0 1

0 0

. . .

0 1

0 0

˛

‹

‹

‹

‹

‹

‹

‹

‚

or K´ “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 1

0 0

. . .

0 1

0 0

1 1

0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (4.9)

Provided that pd, εq ‰ pn,´q, we have ϕε0 P Qε
d.
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Lemma 4.13

Let H “ tM P L | BKεBT “ Kεu where Kε is the matrix defined by Equation (4.9) and

M “

¨

˚

˝

A 0 0

0 B 0

0 0 A´T

˛

‹

‚

.

Then H is a subgroup of LXGOpϕε0q, where L denotes the Levi factor of XU .

Proof. Consider the quadratic forms ϕε0 defined by Equation (4.7) and their associated Gram

matrices K, as defined in Equation (4.8). First we will show that every M P H fixes ϕε0 by checking

the sufficient condition MKMT “ K. We find

MKMT “

¨

˚

˝

A 0 0

0 B 0

0 0 A´T

˛

‹

‚

¨

˚

˝

0 0 Id

0 Kε 0

0 0 0

˛

‹

‚

¨

˚

˝

AT 0 0

0 BT 0

0 0 A´1

˛

‹

‚

“

¨

˚

˝

0 0 A

0 BKε 0

0 0 0

˛

‹

‚

¨

˚

˝

AT 0 0

0 BT 0

0 0 A´1

˛

‹

‚

“

¨

˚

˝

0 0 Id

0 BKεBT 0

0 0 0

˛

‹

‚

“

¨

˚

˝

0 0 Id

0 Kε 0

0 0 0

˛

‹

‚

.

Therefore MKMT “ K if and only if BKεBT “ Kε if and only if M P H. In particular, H Ď

LXGOpϕε0q. If M,M 1 P LXGOpϕε0q then

MM 1´1 “

¨

˚

˝

A 0 0

0 B 0

0 0 A´T

˛

‹

‚

¨

˚

˝

A1´1 0 0

0 B1´1 0

0 0 A1T

˛

‹

‚

“

¨

˚

˝

AA1´1 0 0

0 BB1´1 0

0 0 A´TA1T

˛

‹

‚

.

We have pBB1´1qKεpBB1´1qT “ BB1´1KεB1´TB “ Kε. Therefore MM 1´1 P L X GOpϕε0q and

H ď LXGOpϕε0q. �

Note that this condition MKMT “ K in the proof of Lemma 4.13 is sufficient but certainly not

necessary; each quadratic form ϕ P Q has a unique lower-triangular Gram matrix, but despite fixing

ϕ in the Jordan-Steiner actions, the action of GOpϕq does not preserve this matrix in general.

4.3.3. A subgroup of XU which acts regularly on the nonzero elements of V {UK

In this section we use the multiplicative group of a finite field of order 2d to construct a cyclic subgroup

of XU of order 2d ´ 1. To this end, we construct an element of GLdp2q of order 2d ´ 1 and embed the

cyclic group it generates in the Levi component of XU . We show in Corollary 4.20 that this subgroup
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acts regularly on the non-zero elements of the quotient vector space V {UK. Let us first recall some

basic facts about finite fields.

Theorem 4.14 ([55], Theorem 2.1.63)

Let F be a field and K be a subfield with α P F algebraic of degree d over K and let h be the minimal

polynomial of α over K. Then

(a) The field Krαs is isomorphic to the factor ring Krxs{xhy.
(b) The dimension of Krαs over K is d.

(c) The set tαi | 0 ď i ď d´ 1u is a basis for Krαs over K.

(d) Every element of Krαs is algebraic over K with degree dividing d.

Definition 4.15 ([55], Definition 4.1.1)

An element α P Fq is a primitive element if α generates the multiplicative group Fˆq of nonzero elements

in Fqd .

Definition 4.16 ([55], Definition 4.1.2)

A polynomial f P Fqrxs of degree d ě 1 is a primitive polynomial if it is the minimal polynomial of a

primitive element of Fq.

Construction 4.17

Let α be a primitive element in F2d and let hpxq “ xd`
řd´1
i“0 aix

i be the minimal polynomial of α. As

a vector space over F2, we have F2d “

!

řd´1
i“0 ciα

i | ci P F2

)

. Define an invertible linear transformation

f : F2d Ñ Fd2 by

f :
d´1
ÿ

i“0

ciα
i ÞÑ pc0, ..., cd´1q. (4.10)

The multiplicative group Fˆ
2d

acts on F2d by multiplication modulo hpxq. Therefore, we obtain a

faithful linear representation ρ : Fˆ
2d
Ñ SLdp2q by setting

ρpαq “

¨

˚

˚

˚

˚

˝

fpα1q

fpα2q

...

fpαdq

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

0
... Id´1

0

a0 a1 . . . ad´1

˛

‹

‹

‹

‹

‚

(4.11)

where ai are the coefficients of the minimal polynomial for α. The subgroup xρpαqy ă SLdp2q is called

a Singer subgroup and its generator ρpαq is called a Singer cycle.
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Lemma 4.18

Let s be the 2nˆ 2n matrix defined by

s “

¨

˚

˝

ρpαq´T 0 0

0 I2pn´dq 0

0 0 ρpαq

˛

‹

‚

.

and set S “ xsy. Then S is a subgroup of the Levi factor of XU , S fixes a quadratic form and

|S| “ 2d ´ 1.

Proof. Let S “ xsy. Since α is a primitive element of Fˆ
2d
– C2d´1, it follows from Construction

4.17 that S is cyclic of order 2d´1. By Corollary 4.11, S ď XU and by Lemma 4.13, S ď GOpϕε0q. �

4.3.4. Proof of strong incidence-transitivity in the totally-isotropic case

Lemma 4.19

Let S “ xsy denote the subgroup of XU defined in Lemma 4.18. The action of S on V {UK is permu-

tationally isomorphic to the action of Fˆ
2d

on F2d by multiplication.

Proof. Let x denote a primitive element of Fˆ
2d

and let rpxq “
řd´1
i“0 aix

i be its minimal polyno-

mial. We choose bases txi | 0 ď i ď d´ 1u and tfj ` U
K | 1 ď j ď du for Fˆ

2d
and V {UK, respectively.

Define a mapping rf : F2d Ñ V {UK by setting rfpxiq “ fi`1 ` UK for 0 ď i ď d ´ 1 and extending

linearly to Fˆ
2d

. Then rρ is an isomorphism between F2-vector spaces by construction. Similarly, we

define rρ : Fˆ
2d
Ñ S by rρpxiq “ si. Then rρ is a group isomorphism by construction. We consider now

the natural action of Fˆ
2d

on F2d by multiplication modulo rpxq. For all
řd´1
i“0 cix

i P F2d we have

˜

d´1
ÿ

i“0

cix
i

¸x rf

“

˜

d´2
ÿ

i“0

cix
i`1 ` cd´1

d´1
ÿ

i“0

aix
i

¸ rf

“

˜

d´2
ÿ

i“0

cifi`2 ` cd´1

d´1
ÿ

i“0

aifi`1

¸

` UK

“

˜

d´1
ÿ

i“0

cifi`1 ` U
K

¸s

“

˜

d´1
ÿ

i“0

cix
i

¸ rfs

.

Suppose g P Fˆ
2d

. Then g “ xj where 0 ď j ď 2d ´ 1. Successively applying the equality x rf “ rfs

we have g rf “ xj´1
rfs “ ¨ ¨ ¨ “ rfsj “ rfgrρ as required. �

Corollary 4.20

The Singer subgroup S “ xsy acts regularly on the nontrivial cosets of V {UK.
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Proof. The group Fˆ
2d

acts regularly on itself by multiplication so the permutational isomorphism

constructed in Lemma 4.19 implies S regularly on the nontrivial cosets of V {UK. �

Lemma 4.21

If ε “ ` and 1 ď d ď n, or ε “ ´ and 1 ď d ď n ´ 1, then XU is transitive on the set Qε
d´1 “ tϕ P

Qε | U Ę singpϕqu.

Proof. Let ϕ0 P Qε
d and ψ,ψ1 P Qε

d´1. By Lemma 3.9 there exist c, c1 P V such that for all x P V

ψpxq “ ϕpxq `Bpx, cq, ψ1pxq “ ϕpxq `Bpx, c1q. (4.12)

Corollary 4.20 says xsy ď XU,ϕ0
acts transitively on V {UK. Therefore, we may assume that c and

c1 lie in the same coset of V {UK. In this case c` c1 P UK so the symplectic transvection τc`c1 maps ψ

to ψ1 and stabilises U . �

The possibility that d “ n and ε “ ´ was excluded from Lemma 4.21. In this case Q´n´1 “ Q´

and Q´n “ H since the maximum dimension of a subspace which is totally singular with respect to an

elliptic quadratic form is n ´ 1. We study this exception in Section 4.4, demonstrating that XU acts

transitively on Q´ and performing further analysis.

In order to demonstrate transitivity ‘inside’ the nontrivial cosets of V {UK it is necessary to examine

the unipotent radical. Recall that, by Lemma 4.22, G “ XU is transitive on Qε
d, and by Lemma 4.19

and Corollary 4.20, Gϕ0 is transitive on pV {UKq#.

For w P V we set rws :“ w`UK, the image of w under the natural projection map π : V Ñ V {UK.

Lemma 4.22

Fix ϕ0 P Qε
d and let G “ XU , w P singpϕ0q X pV zU

Kq. Then the stabiliser Gϕ0,rws acts transitively on

singpϕ0q X rws.

Proof. Let w P singpϕ0q X pV zU
Kq. The goal is to map w to an arbitrary element u ` w P

singpϕ0q X rws. Let x “
řn
i“1 pxiei ` yifiq P V . By Lemma 4.12, XU is transitive on Qε

d so without

loss of generality we choose ϕ0 “ ϕε0 as defined in Equation (4.7). By Lemma 4.18 and Corollary

4.20, Gϕ0
acts transitively on

`

V {UK
˘#

so without loss of generality we choose w “ f1. Let u “
řn
i“1 uiei `

řn
i“d`1 vi P U

K and consider the matrix

g “

¨

˚

˝

I 0 0

Y I 0

X Z I

˛

‹

‚

where X,Y, Z are defined by

X “

¨

˚

˚

˚

˚

˝

u1 u2 . . . ud

u2 0 . . . 0
...

...
. . .

...

ud 0 . . . 0

˛

‹

‹

‹

‹

‚

, Z “

¨

˚

˚

˚

˚

˝

ud`1 vd`1 ¨ ¨ ¨ un vn

0 0 ¨ ¨ ¨ 0 0
...

... ¨ ¨ ¨
...

...

0 0 ¨ ¨ ¨ 0 0

˛

‹

‹

‹

‹

‚

, Y “ JZT .
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and J is the 2pn´ dq ˆ 2pn´ dq block-diagonal matrix with blocks

˜

0 1

1 0

¸

.

By Lemma 4.11, g P R if and only if X`XT “ ZJZT . Since the matrix X is symmetric, X`XT

is the dˆ d matrix of zeroes, 0dˆd. Computing ZJZT , we have

ZJZT “

¨

˚

˚

˚

˚

˝

ud`1 vd`1 ¨ ¨ ¨ un vn

0 0 ¨ ¨ ¨ 0 0
...

... ¨ ¨ ¨
...

...

0 0 ¨ ¨ ¨ 0 0

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˝

0 1

1 0

. . .

0 1

1 0

˛

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˝

ud`1 0 ¨ ¨ ¨ 0

vd`1 0 ¨ ¨ ¨ 0
...

... ¨ ¨ ¨
...

un 0 ¨ ¨ ¨ 0

vn 0 ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

vd`1 ud`1 ¨ ¨ ¨ vn un

0 0 ¨ ¨ ¨ 0 0
...

... ¨ ¨ ¨
...

...

0 0 ¨ ¨ ¨ 0 0

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˝

ud`1 0 ¨ ¨ ¨ 0

vd`1 0 ¨ ¨ ¨ 0
...

... ¨ ¨ ¨
...

un 0 ¨ ¨ ¨ 0

vn 0 ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‹

‹

‹

‚

“ 0dˆd.

Therefore g P R. In particular, g is symplectic, stabilises both U and rws, and maps w “ f1 to u`w.

Thus g P XU,rws. It remains to confirm that g fixes ϕ0 in each case ε “ ˘. With respect to the basis

B in Equation (4.2), xg is given by

xg “

˜

x1 `

n
ÿ

i“1

uiyi `
n
ÿ

i“d`1

vixi

¸

e1 `

d
ÿ

i“1

yifi `
n
ÿ

i“d`1

pyi ` y1viqfi `
n
ÿ

i“2

pxi ` y1uiqei.

Evaluating ϕ`0 px
gq and noting that y2 “ y for y P F2, we get

ϕ`0 px
gq “x1y1 ` y1

˜

n
ÿ

i“1

uiyi `
n
ÿ

i“d`1

vixi

¸

`

d
ÿ

i“2

pxiyi ` y1uiyiq

`

n
ÿ

i“d`1

xiyi ` y1

n
ÿ

i“d`1

pvixi ` uiyi ` y1uiviq

“ϕ`0 pxq ` y1

˜

u1 `

n
ÿ

i“d`1

uivi

¸

“ϕ`0 pxq ` y1ϕ
`
0 pu` f1q

Similarly, evaluating ϕ´0 px
gq we get
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ϕ´0 px
gq “x1y1 ` y1

˜

n
ÿ

i“1

uiyi `
n
ÿ

i“d`1

vixi

¸

`

d
ÿ

i“2

pxiyi ` y1uiyiq

`

n
ÿ

i“d`1

xiyi ` y1

n
ÿ

i“d`1

pvixi ` uiyi ` uiviq ` xn ` yn ` y1pun ` vnq

“ϕ´0 pxq ` y1

˜

u1 `

n
ÿ

i“d`1

uivi ` un ` vn

¸

“ϕ´0 pxq ` y1ϕ
´
0 pu` f1q

For both values of ε we have assumed u` f1 P singpϕε0q, so y1ϕ
ε
0pu` f1q “ 0. Therefore ϕε0px

gq “

ϕε0pxq for all x P V , so ϕg0 “ ϕ0. �

Theorem 4.23

Let V “ pFn2 , Bq be a symplectic space with symplectic basis B and U “ xei | 1 ď i ď dy with 1 ď d ď n

and pd, εq ‰ pn,´q. Let ∆ “ Qε
d and Γ :“ ∆X . Then Γ is an X-strongly incidence-transitive code

with X “ Sp2np2q.

Proof. By Lemma 4.9, XU acts transitively on ∆, so it is sufficient to choose any ϕ0 P ∆

and show that X∆,ϕ0
acts transitively on ∆. Let ψ,ψ1 P ∆. By Lemma 3.9, there exists unique

c, c1 P singpϕ0qX
`

V zUK
˘

such that ψpxq “ ϕcpxq “ ϕ0pxq`Bpx, cq and ψ1pxq “ ϕc1 “ ϕ0pxq`Bpx, c
1q.

Further, Lemma 3.10 implies it is sufficient to show that there exists an element of Xϕ0
which maps c

to c1. Indeed, by Lemma 4.20, XU,ϕ1 acts transitively on
`

V {UK
˘#

, so there exists g P X∆,ϕ0
such that

cg P singpϕ0qXrc
1s. Since cg, c1 P singpϕ0qXrc

1s, Lemma 4.22 implies there exists h P XU,ϕ0,rc1s such that

cgh “ c1. Therefore gh fixes ϕ0 and maps ϕc to ϕc1 , that is, Γ is X-strongly incidence-transitive. �

Remark 4.24

If Γ is an X-strongly incidence-transitive code in JpQε, kq with ∆ P Γ and X∆ reducible on V , [38]

shows that X∆ is contained in the full setwise stabiliser of a nondegenerate or totally-isotropic subspace

of V . In particular, Γ corresponds to one of the codes described in Theorem 4.3, or X∆ is contained

in the full setwise stabiliser of a totally isotropic subspace of dimension n and ε “ ´. We show in

Section 4.4 that no further examples arise in the latter case.

4.4. Parabolic subgroups acting transitively on elliptic forms

We now consider the case pd, εq “ pn,´q. Fix the following notation throughout Section 4.4. Let

V “ pF2n
2 , Bq be a symplectic space, let U be an n-dimensional totally isotropic subspace of V and let

XU be the stabiliser of U in X “ Sp2np2q. Note that since dimpUq “ n we have U “ UK. For ϕ P Q´

the maximum dimension of a totally ϕ-singular subspace is n ´ 1, and therefore Lemma 4.12 implies

singpϕq X U is an pn´ 1q-dimensional subspace of V for all ϕ P Q´.
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By [35], there is a factorisation X “ XU GO´2np2q and therefore Lemma 1.14 implies that XU acts

transitively on Q´. In Section 4.4 we show that if Γ Ă
`Q´
k

˘

is an X-strongly incidence-transitive code

with ∆ P Γ and X∆ ď XU , then X∆ leaves invariant a subspace of V of dimension less than n, and

therefore Γ corresponds to one of the codes described in Theorem 4.3.

Recall from Lemma 4.11 that XU – R ¸ L, where R is the unipotent radical and L – GLnp2q is

the Levi factor. In particular, setting n “ d in Corollary 4.11 we have

R “

#˜

Id 0

X Id

¸

| X `XT “ 0

+

so R – Fnpn`1q{2
2 and |R| “ 2npn`1q{2.

Lemma 4.25

Let U be a totally-isotropic n-dimensional subspace of V and let H denote the set of all pn ´ 1q-

dimensional subspaces of U . For each H P H we define PH :“ tϕ P Q´ | singpϕq X U “ Hu. Then:

(a) If H P H and ϕ0 P PH then ϕc P PH if and only if c P singpϕ0q X U . In particular, |PH | “ 2n´1.

(b) The collection P “ tPH | H P Hu is a system of imprimitivity for the action of XU on Q´.

(c) PH is an R-orbit for each PH P P.

(d) The action of L on P is permutationally isomorphic to the transitive action of GLpUq on H.

Proof. We proceed as follows:

(a) Let H P H, ϕ0 P PH and ϕc P Q´. Then

ϕc P PH ô H “ singpϕcq X U ô singpϕ0q X U “ singpϕcq X U (4.13)

ô singpϕ0q X U “ singpϕ0q X singpϕcq X U. (4.14)

By Lemma 3.13, singpϕ0q X singpϕcq “ singpϕ0q X xcy
K, so using Equation (4.14) we deduce

ϕc P PH ô singpϕ0q X U “ singpϕ0q X U X xcy
K ô singpϕ0q X U ď xcy

K ô c P singpϕ0q X U. (4.15)

Therefore ϕc P PH if and only if c P singpϕ0q X U . In particular, |PH | “ | singpϕ0q X U | “ 2n´1.

(b) Lemma 4.12 implies that P is a partition of Q´ and part (a) implies |PH | “ 2n´1 for each H P H.

Therefore |P| “ |Q´|{|PH | “ 2n´ 1. In particular, P is a partition of Q´ into equally sized parts.

For all H P H and for all g P XU we have

pPHq
g “ tϕg P Q´ | singpϕq X U “ Hu “ tϕ P Q´ | singpϕg

´1

q X U “ Hu

“ tϕ P Q´ | singpϕqg
´1

X U “ Hu

where the last equality follows from Corollary 3.11. Since g P XU we have

singpϕqg
´1

X U “ H ô psingpϕq X Uq
g´1

“ H ô singpϕq X U “ Hg

from which we deduce

pPHq
g “ PHg (4.16)

Since XU is transitive on Q´, it follows that P is a system of imprimitivity preserved by XU .
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(c) By Lemma 4.12, for all c P singpϕ0q X U the symplectic transvection τc : V Ñ V defined by

xτc “ x ` Bpx, cqc lies in XU . Moreover, for all cosets x ` U P V {U we have px ` Uqτc “

x ` Bpx, cqc ` U “ x ` U , since c P U . In particular, τc fixes U and V {U pointwise, so Lemma

4.10 implies that if c P singpϕ0q X U then τc P R.

Consider an arbitrary H P H with ϕ0, ϕc P PH . Then part (a) implies c P singpϕ0q X U .

Computing ϕτc0 and expanding using the polarisation equation, we have

ϕτc0 pxq “ ϕ0px`Bpx, cqcq “ ϕ0pxq `Bpx, cqφpcq `Bpx,Bpx, cqcq (4.17)

“ ϕ0pxq `Bpx, cq “ ϕcpxq. (4.18)

Since | singpϕ0q X U | “ 2n´1, Equation (4.17) implies that the length of an R-orbit in Q´ is at

least 2n´1. On the other hand, XU is transitive on Q´ and R ŸXU so R the R-orbits in Q´ all

have the same length. Therefore |ϕR0 | divides both |R| “ 2npn`1q{2 and |Q´| “ 2n´1p2n ´ 1q, so

the length of an R-orbit is at most 2n´1. Therefore PH is an R-orbit for each H P H.

(d) Let tei, fi | 1 ď i ď nu be a symplectic basis for V . Without loss of generality we assume

U “ xei | 1 ď i ď ny. Let W “ xfi | 1 ď i ď ny and note that V “ U ‘ W . We identify

v P V with an ordered pair pu,wq with u P U and w P W . By Corollary 4.11, for all ` P L

there exists a P GLnp2q such that ` “

˜

a 0

0 a´T

¸

. Therefore for all ` P L and v P V we have

v` “ pu,wq` “ pua,wa´T q and therefore for H P H we have

H` “ tpu, 0q` P U | u P Hu “ tpua, 0q P U | u P Hu “ Ha. (4.19)

Define F : GLnp2q Ñ L by F paq “ ` and f : H Ñ P by fpHq “ PH . Clearly F is a group

isomorphism and f is a bijection. Using equations (4.19) and (4.16), for all H P H and ` P L we

have

fpHaq “ PHa “ PpHa,0a´T q “ PH` “ pPHq
` “ fpHqF paq.

Therefore the pair pF, fq is a permutational isomorphism.

�

Lemma 4.26

Let Γ Ă
`Q´
k

˘

be a strongly incidence-transitive code with ∆ P Γ and let U be a totally isotropic

n-dimensional subspace of V . If X∆ ă XU then Γ corresponds to one of the codes constructed in

Theorem 4.3.

Proof. Suppose Γ Ă
`Q´
k

˘

is an X-strongly incidence-transitive code, ∆ P Γ and X∆ ă XU . We

show that there exists a nontrivial proper X∆-invariant subspace of U . By Lemma 4.25 the R-orbits

in Q´ form a system of imprimitivity preserved by XU so Lemma 1.21 implies that ∆ and ∆ are

unions of R-orbits and R ă X∆. Therefore there exists S Ă H such that ∆ “ YHPSPH . We define
qΓ Ă

` P
k{2n´1

˘

as follows. Let q∆ “ tPH | H P Su and define qΓ “ q∆L. We claim that qΓ is L-strongly

incidence-transitive. Indeed, since Γ is X-strongly incidence-transitive, X∆ acts transitively on ∆ and

preserves P, therefore L∆ permutes the elements of q∆ transitively. Similarly, L∆ is transitive on Pzq∆.

Now suppose Σ0 P q∆ and Σ,Σ1 P Pzq∆. Choose any ϕ0, ϕ, ϕ
1 P Q´ such that ϕ0 P Σ0, ϕ P Σ and
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ϕ1 P Σ1. Since Γ is X-strongly incidence-transitive there exists h P X∆,ϕ0
such that ϕ1 “ ϕh. But

X∆ ă XU so X∆ preserves P and X∆,ϕ0
ă X∆,Σ0

. Therefore there exists ` P Rh X L∆ such that

Σ1 “ Σ` and qΓ. By definition, L is transitive on qΓ and therefore qΓ is L-strongly incidence-transitive

as claimed.

However, by Lemma 4.25, the action of L on P is permutationally isomorphic to the action of

GLnp2q on the pn´1q-dimensional subspaces of U and Example 2.7 shows that the action of GLnp2q on

the pn´1q-subspaces of U is permutationally isomorphic to the action of GLnp2q on the 1-dimensional

subspaces of U . Therefore qΓ is equivalent to a ‘projective type code’ as described in [1, Section 7]; the

details are included in Section B.1. Since q “ 2 does not have a square root in Z, Γ̌ does not correspond

to one of the Baer subline codes constructed in Example B.2. Moreover, if ∆ is a r0, 2, 3s1-set as in

part (ii) of Theorem B.4 then, since each line of PGnp2q is incident with three points, k P t1, 2u and

Γ is trivial. The only other possibility is that qΓ is equivalent to a subspace code as in case (i) of

Theorem B.4. Therefore L∆ ă LW for some proper nontrivial subspace W ă U . By Lemma 4.10,

R fixes U pointwise and therefore R ă XW , so X∆ ď XW and therefore Γ corresponds to one of the

codes described in Theorem 4.3. �

4.5. Design and code parameters

Let V “ pFn2 , Bq be a symplectic space and X “ Sp2np2q the associated isometry group. Let Γ be an

X-strongly incidence-transitive code in JpQε, kq. Since X acts transitively on Γ and 2-transitively on

Qε, the codewords of Γ form a 2-design with v “ 2n´1p2n ` εq points. We compute some parameters

associated with the designs constructed throughout Chapter 4.

Definition 4.27

Let V “ pF2n
2 , Bq be a symplectic space where n ě 2. We denote by T “ T εpn, dq a 2-design with

point set V “ Qε. For each totally-isotropic d-dimensional subspace of V which satisfies 1 ď d ď n

and d ‰ n if ε “ ´, we define a block ∆εpUq of T by

∆εpUq “ tϕ P Qε | ϕpuq “ 0 @u P Uu. (4.20)

We compute the parameters pv, k, λ, r, bq associated with the designs T εpn, dq.

Lemma 4.28

Consider the 2-design T “ T εpn, dq defined in Definition 4.27. The parameters of T are given by

v “ 2n´1p2n ` εq

b “
d´1
ź

i“0

22pn´iq ´ 1

2i`1 ´ 1

k “ 2n´1p2n´d ` εq

r “

$

&

%

´

śn´1
i“0

2n´i´1
2i`1´1

¯´

śn´1
j“n´dp2

j ` 1q
¯

if ε “ `
´

śn´2
i“0

2n´i´1
´1

2i`1´1

¯´

śn
j“n´d`1p2

j ` 1q
¯

if ε “ ´



4.5. DESIGN AND CODE PARAMETERS 49

Proof. By Definition 4.27 we have v “ |Qε| “ 2n´1p2n`εq and b is the number of totally-isotropic

d-dimensional subspaces of V . Using equation (2.3), we have b “
śd´1
i“0

22pn´iq
´1

2i`1´1 . By Theorem 4.23,

T is strongly incidence-transitive, and therefore X∆ acts transitively on the points of ∆. If ϕ P ∆

then the Orbit-Stabiliser Theorem implies k “ |X∆ : X∆,ϕ|. We use Theorem 1.18 to compute the

orders of X∆ and X∆,ϕ. If ϕ P ∆XQε then

k “ |XU : XU,ϕ|

“
qdpd`1q{2q2dpn´dq|GLdp2q ˆ Sp2pn´dqp2q|

qdpd´1q{2q2dpn´dq|GLdp2q ˆGOε
2pn´dqp2q|

“
qdpd`1q{2|Sp2pn´dqp2q|

qdpd´1q{2|GOε
2pn´dqp2q|

“ 2d ¨ 2n´d´1p2n´d ` εq

“ 2n´1p2n´d ` εq.

Now, if ϕ P V then ϕ is incident with ∆εpUq if and only if U is ϕ-singular. Therefore the replication

number is given by the number of ε-type d-dimensional singular subspaces in V . Using equations (2.2)

and (2.4) we have

r “

$

&

%

´

śn´1
i“0

2n´i´1
2i`1´1

¯´

śn´1
j“n´dp2

j ` 1q
¯

if ε “ `
´

śn´2
i“0

2n´i´1
´1

2i`1´1

¯´

śn
j“n´d`1p2

j ` 1q
¯

if ε “ ´.
. (4.21)

�

Note that equation (1.3) can be used to calculate λ from the parameters of Lemma 4.28.

Lemma 4.29

Let ε P t˘u and for each totally-isotropic d-space in V define ∆pUq “ tϕ P Qε | U is ϕ-singularu. If

U and W are totally isotropic d-spaces in V with dimpU XW q “ d ´ 1 then | ∆pUq X ∆pW q | “

2n´2
`

2n´d ` ε
˘

. Moreover, the minimum distance of the code from Theorem 4.23 constructed from

the totally-isotropic d-spaces in V has minimum distance δ “ 2n´2p2n´d ` εq

Proof. By Witt’s Theorem we choose a symplectic basis tei, fi | 1 ď i ď nu for V and set,

without loss of generality,

U “ xei, ed | 1 ď i ď d´ 1y dimpUq “ d

W “ xei, fd | 1 ď i ď d´ 1y dimpW q “ d

H “ xei, fi | d` 1 ď i ď ny dimpHq “ 2pn´ dq.

Then we have

UK “ U ‘H dimpUKq “ 2n´ d

WK “W ‘H dimpWKq “ 2n´ d

U XW “ xei | 1 ď i ď d´ 1y dimpU XW q “ d´ 1.
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Suppose ϕ0 P ∆pUqX∆pW q and c P V . Then ϕc P ∆pUqX∆pW q if and only if c P singpϕ0qXU
KXWK.

Note that UKXWK “ pU XW q‘H. Therefore if c P UKXWK then there exist x P U XW and y P H

such that c “ x` y. Using the fact that x P U XW , ϕ0 P ∆pUq X∆pW q and Bpx, yq “ 0 we have

ϕ0pcq “ ϕ0pxq ` ϕ0pyq `Bpx, yq “ ϕ0pyq.

Therefore we have |U XW | “ 2d´1 possible choices for x and, imposing the condition ϕ0|H “ 0 on the

2pn´1q-dimensional nondegenerate subspace U , 2n´d´1p2n´d`εq possible choices for y. Therefore we

have |∆pUq X∆pW q| “ 2d´12n´d´1p2n´d ` εq “ 2n´2p2n´d ` εq. Therefore δ “ k ´ 2n´2p2n´d ` εq “

2n´1p2n´d ` εq ´ 2n´2p2n´d ` εq “ p2n´1 ´ 2n´2qp2n´d ` εq “ 2n´2p2n´d ` εq. �



CHAPTER 5

Irreducible geometric codeword stabilisers

Problem: Let G be an irreducible subgroup of X “ Sp2np2q of geometric Aschbacher type.

Classify the X-strongly incidence transitive codes Γ Ă
`Qε
k

˘

with X∆ “ G for ∆ P Γ.

Let V “ pF2n
2 , Bq be a symplectic vector space and let X – Sp2np2q be the isometry group of the

symplectic form B. We denote by Qε the set of all ε-type quadratic forms on V which polarise to B.

In Chapter 5 we demonstrate that there are no X-strongly incidence-transitive codes Γ Ă
`Qε
k

˘

with

∆ P Γ and X∆ irreducible on V and of geometric Aschbacher type. In particular, by Theorem 1.18 we

assume X∆ lies in C2, C3 or C8. These classes are considered in Sections 5.1, 5.2 and 5.3 respectively.

Lemma 5.1

Let X “ Sp2np2q and let Γ Ă
`Qε
k

˘

be an X-strongly incidence-transitive code with 2 ď k ď 1
2 |Q

ε|. If

X∆ acts irreducibly on V “ F2n
2 for some ∆ P Γ then |∆| ě 2n` 1 and n ě 3.

Proof. Suppose ϕ0 P ∆ and let C “ tc P V | ϕc P ∆u. Let U denote the intersection of

all subspaces in V which contain C. Since X∆ fixes ∆ and U is the unique subspace of minimal

dimension containing C, it follows that X∆ fixes U . But X∆ acts irreducibly on V and |C| ě 2, so

U “ V and xCy “ V . Therefore C contains the zero vector and a spanning set for V , which implies

|C| “ |∆| ě 2n ` 1. In particular, the assumption |∆| ď 1
2 |Q

ε| gives 2n ` 1 ď |∆| ď 2n´2p2n ` εq.

If n “ 1, or pn, εq “ p2,´q then this condition is impossible to satisfy. If pn, εq “ p2,`q then

2n` 1 “ 5 “ 2n´2p2n ` 1q so |∆| “ 5 and |∆ˆ∆| “ 155. However, |Sp4p2q| is not divisible by 155 so

this case must also be excluded. Therefore n ě 3 and |∆| ě 2n` 1. �

5.1. Imprimitive subgroups

Let D denote a direct sum decomposition V “
Àt

i“1 Vi of V into nondegenerate subspaces Vi of

dimension dimpViq “
2n
t with Vi orthogonal to Vj for all i ‰ j. The C2-subgroups of Sp2np2q are the

stabilisers XD. It is demonstrated in [38] that such groups are maximal in Sp2np2q and have structure

XD “ Sp
`

2n
t , 2

˘

o St. In this section we compute the XD-orbits in Qε and apply the results to the

classification of strongly incidence-transitive codes. We begin with some notation.

Definition 5.2

Let D denote a decomposition V “ ‘ti“1Vi and let ϕ : V Ñ F2 be a quadratic form of type ε on V .

Denote by εi “ sgnpViq the type of ϕ|Vi , and write εD “ pε1, . . . , εtq. Let Epϕq denote the number of

i such that εi “ ´.

51
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Lemma 5.3

The XD´orbits in Qε are the subsets Om “ tϕ P Qε | Epϕq “ mu for all integers 0 ď m ď t such that

p´1qm “ ε.

Proof. For every ϕ P Qε, Theorem 3.1 implies the groups SppViq – Spp 2n
t , 2q preserve the types

εi of the restrictions ϕi “ ϕ|Vi for all 1 ď i ď t. Moreover, the St component of XD permutes the

components Vi of the decomposition D and therefore permutes the entries of the vector pε1, . . . , εtq

while preserving Epϕq. This implies the subsets Om are XD´invariant. It remains to show that XD

acts transitively on each non-empty subset Om. Let ϕ,ϕ1 P Om have types ε “ Πt
i“1εi and ε1 “ Πt

i“1ε
1
i

respectively. Since Epϕq “ Epϕ1q and St acts transitively on the m-subsets of t1, . . . , tu, there exists

σ P St such that εiσ´1 “ ε1i for all 1 ď i ď t, and by Lemma 2.32, we can represent ϕσ uniquely

as ϕ1σ´1 ‘ ¨ ¨ ¨ ‘ ϕtσ´1 . Further, Theorem 3.1 implies that SppViq acts transitively on the quadratic

forms on Vi of type ε1i “ εiσ´1 for each i, so there exists gi P SppViq such that ϕgi
iσ´1 “ ϕ1i. Therefore

σpg1, . . . , gtq P XD maps ϕ to ϕ1 and the non-empty Om are the XD-orbits in Qε. Finally Om ‰ H if

and only if p´1qm “ ε. �

Corollary 5.4

Consider the direct sum decomposition D of V “ ‘ti“1Vi and let XD denote the stabiliser of D in

Sp2np2q.

(a) If t ě 4 then XD has at least three orbits in Q`.

(b) If t ě 5 then XD has at least three orbits in Q´.

Proof. By Lemma 5.3 we need only to check the number of integers m satisfying p´1qm “ ε with

0 ď m ď t. If ε “ ` and t ě 4 then Om are non-empty orbits for m P t0, 2, 4u. If ε “ ´ and t ě 5

then Om are non-empty orbits for m P t1, 3, 5u. Therefore XD has three or more orbits in Qε in either

case. �

Remark 5.5

Lemma 5.3 implies that XD has two orbits in Qε only in the following cases:

(i) t “ 2 and ε “ `, namely O0 and O2,

(ii) t “ 3 and ε “ ˘, namely O0 and O2 for ε “ `, and O1 and O3 for ε “ ´,

(iii) t “ 4 and ε “ ´, namely O1 and O3

while XD acts transitively, that is, O1 “ Q´, in the case

(iv) t “ 2 and ε “ ´.

Lemma 5.6

Suppose that X∆ ď XD and X∆ acts transitively on ∆ˆ∆. Then case (i) or (iv) of Remark 5.5 holds

and moreover, X∆ contains a reducible subgroup which acts transitively on ∆ˆ∆.
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Proof. In case (i) we have V “ V1 ‘ V2 with V1 and V2 both nondegenerate. By the definition

of the Aschbacher class C2, V2 “ V K1 . Since XD has two orbits in Q`, X∆ “ XD and Remark 1.5

implies we may choose ∆ to be either orbit. Thus we may assume ∆ “ O0 and ∆ “ O2. Then by

Lemma 5.3, X∆ – XD. Let ϕ0 P ∆. Then X∆,ϕ0
– GO`pn, 2q ˆ GO`pn, 2q. For all µ P ∆, Lemma

2.32 implies that there exist elliptic forms µ1 and µ2, on V1 and V2 respectively, such that µ “ µ1‘µ2.

By [35, Table 1], the expression Sp2mp2q “ GO`2m GO´2mp2q is a group factorisation for all m ě 2, and

therefore Lemma 1.14 implies the orthogonal group acts transitively on quadratic forms of opposite

type. Therefore Lemma 2.32 implies that for all µ, ν P ∆, there exists pg1, g2q P X∆,ϕ0 such that

µgii “ νi and therefore, ∆X is indeed a strongly incidence transitive code. However, we note that ∆

corresponds precisely to the codeword used to construct Γ in Lemma 4.8. In particular, the subgroup

XV1 – Sppn, 2q ˆ Sppn, 2q of XD is reducible and has the same orbits in Q` as XD. Although the full

stabiliser in X∆ “ XD gives us an example in this case, the subgroup H “ X∆,V1 is reducible and by

Lemma 4.8 is strongly incidence-transitive on Q`.

In case (ii) we have V “ V1 ‘ V2 ‘ V3 and ε P t`,´u. By Remark 1.5 may assume that ∆ Ă

Qε consists of quadratic forms satisfying ε1 “ ε2 “ ε3 “ ε, while ∆ consists of forms satisfying

tε1, ε2, ε3u “ tε,´ε,´εu. Note that if ε “ ´ and dimpViq “ 2 then |∆| “ 1, so the corresponding code

is degenerate. Since both |∆| and |∆| ą 1, dimpViq ě 3 in the case ε “ ´. Let ϕ P ∆, µ P ∆ such

that µ has type pε,´ε,´εq and ϕ|V1
‰ µ|V1

. Since X∆ “ XD acts transitively on ∆ˆ∆, Lemma 2.32

allows us to define uniquely a third form ν P ∆ such that ν|V1
“ ϕ|V1

, ν|V2
“ µ|V2

and ν|V3
“ µ|V3

. If

XD acts transitively on ∆ˆ∆ then there exists g P XD,ϕ such that µg “ ν, in particular, µg|V1
“ ϕ|V1

.

But g fixes ϕ and therefore g fixes V1 so pϕ|V1
q “ ϕ|V1

. Therefore we have a contradiction.

Case (iii) is dealt with in a similar manner to case (ii): by Remark 1.5 we may assume ∆ “

O1, ∆ “ O3 and X∆ “ XD. Select ϕ P ∆ and µ P ∆ with respective types p`,`,`,´qD and

p`,´,´,´qD such that ϕ|V1
‰ µ|V1

. Using Lemma 2.32 we define a unique quadratic form ν P Q´ by

ν “ ϕ1 ‘ µ2 ‘ µ3 ‘ µ4, where ν1 is not isometric to ϕ1. By definition, ν P ∆. Suppose there exists

g P XD,ϕ such that µg “ ν. Since elements of X preserve type, we must have pµgq|V1
“ ϕ|V1

. But g

fixes ϕ and must therefore fix ϕ1, a contradiction.

In case (iv) we have XD – Sppn, 2q oC2 acting transitively on Q´. The subgroup XV1
“ Sppn, 2qˆ

Sppn, 2q is normal in XD by definition of the wreath product. Lemma 4.8 implies XV1
has two orbits in

Q´, namely the forms of type p`,´qD and forms of type p´,`qD. Since XV1
is an intransitive normal

subgroup of XD the XV1
-orbits in Q´ form a system of imprimitivity. Then Lemma 1.21 implies that

∆ must be a union of blocks, but ∆ is properly contained in Q´ so this implies ∆ is an XV1
-orbit.

Therefore X∆ “ XV1
is reducible. �

Combining the results of Corollary 5.4 and Lemma 5.6 we conclude that the only examples of

strongly-incidence transitive codes with X∆ ď XD for some decomposition D correspond to the re-

ducible examples constructed in Section 4.
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5.2. Field reduction subgroups

Let α denote a primitive element of F2b . In Construction 4.17 we viewed F2b and Fb2 as b-dimensional

vector spaces over F2 and constructed an F2-linear isomorphism f : F2b Ñ Fb2 defined by

f :
b´1
ÿ

i“0

βiα
i ÞÑ pβ0, β1, . . . , βb´1q.

Let W “ F2m
2b and V “ F2mb

2 . Define an invertible linear transformation L : W Ñ V by

L : pw1, w2, . . . , w2mq ÞÑ pfpw1q; fpw2q; . . . ; fpw2mqq (5.1)

where the ‘;’ symbol in Equation (5.1) represents vector concatenation.

For v P V and g P ΓL2mp2
bq we define an action of ΓL2mp2

bq on V by

vg “ LppL´1pvqgq. (5.2)

The image of ΓL2mp2
bq in GL2mbp2q is a C3-subgroup and it is maximal if and only if b is prime [38].

We denote the image XS since it can be viewed as the setwise stabiliser of the regular b-spread S in

V (see [56]). By [35, Table 1], the expression X “ XS GOε
2mbp2q is a maximal factorisation for each

ε P t`,´u. It follows from [35, Section 1.1] that XS acts transitively on Qε.

Remark 5.7

We review some facts about automorphisms of finite fields; see [55] for further details. Let q “ 2b

with b prime and λ P Fq. The automorphism group of Fq is a cyclic group of order b generated by

the Frobenius automorphism fpλq “ λ2. The elements of Fq lying in the orbit λAutpFqq are called the

conjugates of λ in Fq. Lemma 2.1.75 in [55] implies AutpFqq fixes F2 pointwise while |λAutpFqq| “ b

when λ P FqzF2. The field trace Tr : F2b Ñ F2 is defined by Trpαq “
ř2b´1

i“1 αi. Let K “ kerpTrq and

K# “ Kzt0u. Note that Trp1q “ 0 if and only if b “ 2, in which case K “ t0, 1u and AutpFqq acts

trivially on K. If b ě 3 then |K| “ 2b´1 and apart from the trivial orbit t0u, AutpFqq has p2b´1´ 1q{b

orbits in K, each of which has length b. Since Fq has characteristic two, every λ P Fˆq is a square. For

all λ P Fˆq we denote by
?
λ the unique element in Fˆq satisfying

?
λ

2
“ λ.

If W is equipped with a bilinear or quadratic form then the trace may be used to define a bilinear

or quadratic form on V . The following theorem is a special case of Theorem C from [57].

Theorem 5.8 ([57])

Let Φ be a quadratic form of type ε P t`,´u on W “ F2m
2b which polarises to a symplectic form rB.

Then B “ Tr ˝ rB ˝ L´1 defines a non-degenerate alternating form on V “ F2mb
2 and ϕ “ Tr ˝Φ ˝ L´1

defines a type ε quadratic form on V which polarises to B.
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Let gσ P Sp2mp2
bq ¸ Cb. Since g is an isometry of rB and the trace of a field element is preserved

by the field automorphism σ, for all x, y P V we have

Bpxg, ygq “ Trp rBpL´1pxqgσ, L´1pyqgσqq

“ Trp rBpL´1pxqg, L´1pyqgqσq

“ Trp rBpL´1pxq, L´1pyqq

“ Bpx, yq.

Therefore, there exists an injective homomorphism from similarity group ΓSp2mp2
bq of rB into the

isometry group Sp2mbp2q preserving B. Such subgroups form the class of C3 subgroups in Sp2mbp2q. It

is shown in [38] that Sp2mp2
bq ¸Cb is maximal if and only if b is prime. For the remainder of Section

5.2 we denote by T the mapping T : QpW q Ñ QpV q defined for all x P V by

rT pΦqspxq “ Tr ˝Φ ˝ L´1pxq “ TrpΦpL´1pxqqq. (5.3)

We also set K “ kerpTrq and K# “ Kzt0u.

Lemma 5.9

Let Φ0 P QpW q and set ϕ0 “ T pΦ0q as defined in Equation (5.3). For each c P W define a function

Φc : W Ñ F2b by

Φcpwq “ Φ0pwq ` rBpw, cq2. (5.4)

Then Φc P QpW q and T pΦcq “ ϕLpcq.

Proof. Let Φ0 P QpW q. Then for any c P W we define Φcpxq “ Φ0pxq ` rBpx, cq2. Then for all

λ P F2b and x, y PW we have

Φcpλxq “ Φ0pλxq ` rBpλx, cq2

“ λ2Φ0pxq ` λ
2
rBpx, cq2

“ λ2pΦ0pxq ` rBpx, cq2q

“ λ2Φcpxq

and

Φcpx` yq “ Φ0px` yq ` rBpx` y, cq2

“ Φ0pxq ` Φ0pyq ` rBpx, yq ` p rBpx, cq ` rBpy, cqq2

“ Φ0pxq ` rBpx, cq2 ` Φ0pyq ` rBpy, cq2 ` rBpx, yq

“ Φcpxq ` Φcpyq ` rBpx, yq.
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In other words, Φc is a quadratic form on V which polarises to rB. Moreover, for all x P V we have

T rΦcspxq “ TrpΦcpL
´1pxqqq

“ TrpΦ0pL
´1pxqq ` rBpL´1pxq, cq2q

“ TrpΦ0pL
´1pxqqq ` Trp rBpL´1pxq, cq2q

“ TrpΦ0pL
´1pxqqq ` Trp rBpL´1pxq, cqq2

“ T rΦ0spxq `Bpx, Lpcqq

“ ϕLpcqpxq.

Therefore T rΦcs “ ϕLpcq. �

Lemma 5.10

The mapping T : QpW q Ñ QpV q defined in Equation (5.3) is a bijection.

Proof. Fix Φ0 P QpW q and let ϕ0 “ T pΦ0q. For all ϕ P QpV q there exists a unique c P V such

that ϕ “ ϕc. Since L is a bijection, L´1pcq is well defined and Lemma 5.9 implies T pΦL´1pcqq “ ϕc.

Therefore T is surjective.

We now show that T is injective. Suppose there exists Φ0,Φ P QpW q such that Φ0 ‰ Φ and

T pΦ0q “ T pΦq. Then for all w PW we have

TrpΦ0pwqq ` TrpΦpwqq “ 0. (5.5)

Let S “ singpΦ0qXpW z singpΦqq. Then S “ H if and only if singpΦ0q “ singpΦq if and only if Φ “ αΦ0

for some α P Fˆq . If Φ “ αΦ0 then Φ polarises to α rB and since Φ P QpW q, we must have α “ 1.

Therefore S is non-empty. Now let u P S, λ P FqzK and v “
b

λ
Φpuqu. Then

Φ0pvq “ Φ0

˜
d

λ

Φpuq
u

¸

“
λ

Φpuq
Φ0puq “ 0

and

Φpvq “ Φ

˜
d

λ

Φpuq
u

¸

“
λ

Φpuq
Φpuq “ λ.

It follows that TrpΦ0pvqq ` TrpΦpvqq “ 1, which contradicts Equation (5.5). Therefore T is injective,

and T is a bijection. �

Corollary 5.11

Let Φ0,Φ P QpW q and set ϕ0 “ T pΦ0q and ϕ “ T pΦq as defined in Equation (5.3). Then the following

hold:

(a) There exists c PW such that Φ “ Φc as in Equation (5.4), and ϕ “ ϕLpcq.

(b) Φ0 and Φ are of the same type if and only if Φ0pcq P kerpTrq.

(c) If Φpxq “ Φ0pxq ` rBpx, cq2 and Φ1pxq “ Φ0pxq ` rBpx, dq2 then Φ1pxq “ Φpxq ` rBpx, c` dq2.



5.2. FIELD REDUCTION SUBGROUPS 57

Proof.

(a) Follows from Lemmas 5.9 and 5.10.

(b) By Theorem 5.8, Φ0 and Φc are of the same type if and only if ϕ0 and ϕLpcq are of the same type.

Therefore by Lemma 3.9, Φ0 and Φc are of the same type if and only if ϕ0pLpcqq “ TrpΦ0pcqq “ 0,

that is Φ0pcq P K.

(c) If Φpxq “ Φ0pxq ` rBpx, cq2 and Φ1pxq “ Φ0pxq ` rBpx, dq2 then we add both equations together to

get Φpxq ` Φ1pxq “ rBpx, cq2 ` rBpx, dq2, so Φ1pxq “ Φpxq ` rBpx, c` dq2.

�

Lemma 5.12

The bijection T : QεpW q Ñ QεpV q and the isomorphism f : ΓSp2mp2
bq Ñ XS resulting from Equation

(5.2) together form a permutational isomorphism between the action of ΓSp2mp2
bq on QεpW q and XS

on QεpV q.

Proof. By Lemma 5.10 T is a bijection and by Equation (5.2), f : ΓSp2mp2
bq Ñ XS is a

isomorphism. Let Φ P QεpW q and g P ΓSp2mp2
bq. For all x P V we have

rT pΦqsfpgqpxq “ pTr ˝Φ ˝ L´1qfpgqpxq “ TrpΦpL´1pxfpgq´1qqq

“ TrpΦpL´1pxqg´1qq “ TrpΦgpL´1pxqqq

“ Tr ˝Φg ˝ L´1pxq “ rT pΦgqspxq.

Therefore T pΦgq “ T pΦqfpgq. �

Remark 5.13

We will usually avoid writing the isomorphism L : W Ñ V explicitly in our equations for the rest of

the section. For example, if c P V then we will write Φpcq for ΦpL´1pcqq and Φc for ΦL´1pcq. In other

words, we imagine the quadratic forms in QpW q and QpV q are able to switch between vectors in W

and vectors in V as needed. The intent is to minimise clutter.

Lemma 5.14

Let V “ F2mb
2 with b prime and let G “ XS , where S denotes the regular b-spread in V . For all ϕ P

QεpV q the group Gϕ is a maximal C3 subgroup in Xϕ “ GOε
2mbp2q. In particular, Gϕ – GOε

2mp2
bq¸Cb.

Proof. By Lemma 5.10 there exists a unique quadratic form Φ P QεpW q such that ϕ “ Tr ˝Φ ˝

L´1. Let f : ΓSp2mp2
bq Ñ XS denote the group isomorphism derived from Equation (5.2). Then

g P Gϕ if and only if TrpΦpxf
´1
pgqqq “ TrpΦpxqq for all x P W . In particular, f´1pgq P ΓOε

2mp2
bq.

Since b is prime and ΓOε
2mp2

bq ď ΓSp2mp2
bq, [38] and [39] imply the image of ΓOε

2mp2
bq in Xϕ is a

type C3 maximal subgroup isomorphic to GOε
2mp2

bq ¸ Cb. �
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Lemma 5.15

Let U be a non-singular 1-dimensional subspace of W and q “ 2b. For each λ P Fq there exists a

unique element u P U such that ϕpuq “ λ.

Proof. Clearly ϕp0q “ 0. Let w P Uzt0u. If ϕpwq “ 0 then for all λ P Fq we have ϕpλwq “

λ2ϕpwq “ 0, a contradiction to the assumption that U is non-singular. Therefore ϕpwq P Fˆq . Since Fq
has characteristic two, every λ P Fˆq is a square. For all λ P Fˆq we denote by

?
λ the unique element

in Fˆq satisfying
?
λ

2
“ λ. Let u “

a

λϕpwq´1w. Then ϕpuq “ ϕp
a

λϕpwq´1wq “ λϕpuq´1ϕpwq “ λ.

Since |U | “ |Fq|, u is the unique element such that ϕpuq “ λ. �

Lemma 5.16

Let q “ 2b with b prime, ϕ0 P QεpV q and Φ0 “ T´1pφ0q. For λ P K “ kerpTrq we write

θλ “ tϕc P Qε | Φ0pcq “ λu

θrλs “
!

ϕc P Qε | c ‰ 0 and Φ0pcq P λ
AutpF

2b
q
)

.

Let G denote the image of ΓSp2mp2
bq in Sp2mbp2q. The non-trivial Gϕ0 -orbits in Qε are of the form

θrλs where λ P K. If b ě 3 then, including the trivial orbit tϕ0u, there are 2` 2b´1
´1
b distinct Gϕ0-orbits

in Qε. If b “ 2 then, including the trivial orbit tϕ0u, there are 3 distinct Gϕ0 -orbits in Qε. Moreover,

|θr0s| “ |θ0| “ pq
m´1 ` εqpqm ´ εq, (5.6)

|θr1s| “ |θ1| “ qm´1pqn ´ εq, and (5.7)

|θrλs| “ qm´1bpqm ´ εq for all λ P KzF2. (5.8)

Proof. By Lemma 5.14, every g P Gϕ0
can be written as a product g “ g0σ where g0 P

GOε
2mp2

bq ă Gϕ0
and σ P Cb ă Gϕ0

. For all c P K and g0σ P Gϕ0
we have

Φ0pcg0σq “ Φ0pcg0qσ “ Φ0pcqσ

so the sets θrλs are Gϕ0-invariant. Note that any σ P Cb fixes F2 so θr0s “ θ0 and θr1s “ θ1. We

now apply Lemma 3.10. Let u, v P singpϕ0q with Φ0puq,Φ0pvq P K. If Φ0puq “ Φ0pvq “ 0 then by

Witt’s Lemma, there exists g0 P GOε
2mp2

bq such that ug0 “ v. Therefore Gϕ0 is transitive on θr0s. Let

ϕu, ϕv P θrλs where λ P K#. Then by definition there exists a field automorphism σ P Cb such that

Φ0puq
σ “ Φ0pvq. Let u1 “

b

Φ0puq
Φ0pvq

v. Since

Φ0pu
1q “ Φ0

˜

d

Φ0puq

Φ0pvq
v

¸

“
Φ0puq

Φ0pvq
Φ0pvq

“ Φ0puq,
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there exists g0 P GOε
2mp2

bq such that ug0 “ u1. Let g “ g0σ. We have ug0σ P xvy and Φ0pu
g0σq “

Φ0pu
1qσ “ Φ0pvq. Therefore Lemma 3.10 implies ug “ v. It follows that ϕg

´1

u “ ϕv. Therefore Gϕ0
is

transitive on θrλs for all λ P K#.

The orbit θ0 is parametrised by the non-zero Φ0-singular vectors in W . Therefore |θ0| is determined

by multiplying the number of totally singular 1-spaces in W by |Fˆ
2b
| “ q ´ 1. Therefore |θ0| “

pqm´1 ` εqpqm ´ εq. By Lemma 5.15, the number of vectors in V such that Φpvq “ λ for some fixed

λ P Fˆq does not depend on λ, so

|θλ| “
q2m ´ pqm´1 ` εqpqm ´ εq ´ 1

q ´ 1
“ qm´1pqm ´ εq.

By Remark 5.7, Cb fixes F2 pointwise and therefore θr0s “ θ0 and θr1s “ θ1. In particular, if b “ 2

then the Gϕ0
-orbits in Qε are tϕ0u, θr0s, and θr1s. If b ě 3 then for all λ P K# the orbit λAutpFqq

contains b distinct elements, so |θrλs| “ |θλ|b “ qn´1pqn´ εqb. Since b is prime, Fermat’s little theorem

states that 2b´1 ” 1 mod b and therefore there are 2 ` 2b´1
´1
b distinct Gϕ0

-orbits in Qε, namely

ttϕ0u, θr0s, θrλis|1 ď i ď 2b´1
´1
b u, where the λi lie in separate AutpFqq-orbits in Fq. �

Lemma 5.17

Let q “ 2b. If b ě 3 or pε, bq “ p´, 2q then |θ0| ă
1
2 |Q

ε|. If pε, bq “ p`, 2q then |θ0| ě
1
2 |Q

ε| with

equality holding if and only if m “ 1.

Proof. To begin with we consider the case b ě 3. Note that by Corollary 5.16 |θ0| “ pq
m´1 `

εqpqm ´ εq and 1
2 |Q

ε| “ 1
4q
mpqm ` εq. If ε “ ` we have

1

2
|Q`| ´ |θ0| “

1

4
qmpqm ` 1q ´ pqm´1 ` 1qpqm ´ 1q

ě
1

4
qmpqm ` 1q ´ qmpqm´1 ` 1q

“
1

4
qmpqm´1pq ´ 4q ´ 3q

ě
1

4
qmpq ´ 7q.

But b ě 3 implies q ě 8 so 1
4q
mpq ´ 7q ą 0. Thus |θ0| ă

1
2 |Q

`|. If ε “ ´ we have

1

2
|Q´| ´ |θ0| “

1

4
qmpqm ´ 1q ´ pqm´1 ´ 1qpqm ` 1q

ě
1

4
qmpqm ´ 1q ´ qm´1pqm ` 1q

“
1

4
qm´1pqmpq ´ 4q ´ q ´ 4q

ě
1

4
qm´1pqpq ´ 4q ´ q ´ 4q

“
1

4
qm´1pq2 ´ 5q ´ 4q.
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ε b m Non-trivial suborbits ∆ Ď Reference
+ 2 ě 1 θ0, θ1 θ0 Lemma 5.20

3 ě 1 θ0, θrαs θrαs Lemma 5.21

- 2 1 θ1 “ Q´ztϕ0u θ1 Lemma 5.22
3 1 θrαs “ Q´ztϕ0u θrαs Lemma 5.22
2 ě 2 θ0, θ1 θ1 Lemma 5.19
3 ě 2 θ0, θrαs θrαs Lemma 5.21

Table 5.1. C3 suborbits

By elementary algebra, the roots of the quadratic q2´ 5q´ 4 are 1
2 p5˘

?
41q (approximately ´0.7

and 5.7). Since q ě 8, we have 1
4q
m´1pq2 ´ 5q ´ 4q ą 0 therefore |θ0| ă

1
2 |Q

´|.

On the other hand if b “ 2 then we have |θ0| “ p4
m´1 ` εqp4m ´ εq and 1

2 |Q
ε| “ 4m´1p4m ` εq.

Therefore

|θ0| ´
1

2
|Qε| “ p4m´1 ` εqp4m ´ εq ´ 4m´1p4m ` εq

“ 42m´1 ` ε4m ´ ε4m´1 ´ 1´ 4m´1p4m ` εq

“
1

2
ε4m ´ 1.

Since m is a positive integer we see that ε “ ` implies |θ0| ě
1
2 |Q

`| with equality holding if and only

if m “ 1, while ε “ ´ implies |θ0| ă
1
2 |Q

`| for all m. �

Lemma 5.18

Let Γ be a strongly incidence-transitive code in JpQε, |∆|q such that |∆| ď 1
2 |Q

ε| and X∆ ď XS –

Sp2mp2
bq ¸Cb for some prime b. Then b “ 2 or 3. Moreover, the sub-orbits of XS which may contain

∆ are summarised in Table 5.2, where α denotes a primitive element of F2b .

Proof. Recall that X∆ ď G and X∆,ϕ0 acts transitively on ∆, therefore ∆ is contained in a

Gϕ0-orbit. We assume as usual that |∆| ď 1
2 |Q

ε|. If b ě 3 then Lemma 5.17 implies ∆ Ę θr0s. But

there are 2b´1
´1
b distinct Gϕ0

-orbits of the form θrλs with λ P K#. In order to satisfy the assumption

|∆| ď 1
2 |Q

ε| we must have b ď 3. The information contained in Table 5.2 now follows directly from

Lemma 5.17. �

Thanks to Lemma 5.18 we now know that if ∆X is a strongly incidence-transitive code and

X∆ ď G “ Sp2mp2
bq ¸ Cb then b “ 2 or 3. Moreover, for m ě 2 we know precisely which Gϕ0

-orbits

may contain the complement ∆ of a potential codeword ∆.

Recall Remark 1.22 in which we argued that for any subset A of ∆ we have ∆ Ď XϕPAΘpϕq, where

Θpϕq denotes the Gϕ-orbit in Qε containing ∆. For the rest of this section we will use Remark 1.22 to

demonstrate the non-existence of strongly incidence-transitive codes with X∆ ď XS for m ě 2, before

turning our attention to some special cases in which X∆ is reducible and m “ 1.
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Lemma 5.19

Let V “ F4m
2 with m ě 2, X “ Sp4mp2q and G “ Sp2mp4q ¸ C2. If ∆ Ă Q´ and X∆ ď G then X∆ is

intransitive on ∆ˆ∆.

Proof. We proceed by contradiction. Suppose ∆ Ă Q´, X∆ ď G and X∆ acts transitively on

∆ˆ∆. Without loss of generality assume |∆| ď 1
2 |Q

´|.

Let ϕ0 P ∆. Since X acts transitively on Q´ we may assume that

Φ0pxq “
m
ÿ

i“1

xiyi ` x
2
m ` αy

2
m

where α is a primitive element of F4.

For any A Ď ∆ we have ∆ Ď XϕPAΘpϕq.

By Lemma 5.18, for all a P singpΦ0q we have Tr ˝Φa P ∆. If ϕc P ∆ then Φc P Θpϕaq and

therefore by Lemma 5.9 we must have Φapa ` cq “ 1. Note that Lemma 5.18 implies Φ0paq “ 0 and

Φ0pcq “ 1. Expanding the left hand side using equations (3.1) and (3.10) (the polarisation equation

and parametrisation equation) we have

Φapa` cq “ Φ0pa` cq ` rBpa` c, aq2

“ Φ0paq ` Φ0pcq ` rBpa, cq ` p rBpa, aq ` rBpa, cqq2

“ 0` 1` rBpa, cq ` p0` rBpa, cqq2

“ 1` rBpa, cq ` rBpa, cq2

“ 1` Trp rBpa, cqq.

Therefore we have Trp rBpa, cqq “ 0, that is, rBpa, cq P F2. However, if a P singpΦ0q then Φ0pλaq “

λ2Φ0paq “ 0, so λa P singpΦ0q for all λ P F4. This implies rBpa, cq “ 0. Note that A :“ tei, fiu
m´1
i“1 Ă

singpΦ0q. Therefore if c “
řm
i“1pciei ` difiq then rBpei, cq “ di “ 0 and rBpfi, cq “ ci “ 0 for all i such

that 1 ď i ď m ´ 1. Applying Lemma 5.18 again, we have Φ0pcq “ cmdm ` c2m ` αd2
m “ 1. Using

Equation (5.8) from Corollary 5.16 to count the solutions to this equation, we find |XaPAYt0uΘpϕaq| “

41´1p41`1q “ 5. But |∆| ě 1
2 |Q

´pF4mq| “ 4m´1p4m´1q ą 5 for all m ě 2, a contradiction. Therefore

no such ∆ exists. �

Lemma 5.20

Let V “ F4m
2 . There are no subsets ∆ Ă Q`pV q such that X∆ ď Sp2mp4q ¸ C2 with X∆ acting

transitively on ∆ˆ∆.

Proof. Suppose for the sake of contradiction that ∆ is such a subset. Without loss of generality

assume |∆| ď 1
2 |Q

`|. Since X acts transitively on Q` we may assume ϕ0 “ Tr ˝Φ0 P ∆ where

Φ0pxq “
m
ÿ

i“1

xiyi.
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We consider first the case m ą 1 with ∆ Ď θ0. Let α denote a primitive element of F4 and A “

tem` fm, αem`α
2fm, α

2em`αfmu. Note that Φ0paq “ 1 for all a P A, therefore Lemma 5.18 tells us

tϕa|a P Au Ă ∆. If ϕc P ∆ then necessarily ϕc P Θpϕaq for all a P A, so Φapa` cq “ 0 by Lemma 5.9.

Note that Lemma 5.18 implies Φ0paq “ 1 and Φ0pcq “ 0. Expanding the left hand side with equations

(3.1) and (3.10) we have

Φapa` cq “ Φ0pa` cq ` rBpa` c, aq2

“ Φ0paq ` Φ0pcq ` rBpa` c, aq ` rBpa, cq2

“ 1` Trp rBpa, cqqq

therefore we require Trp rBpa, cqq “ 1, that is, rBpa, cq P F4zF2. For our particular choice of A, this

implies

(i) rBpem ` fm, cq “ cm ` dm P F4zF2,

(ii) rBpαem ` α
2fm, cq “ α2cm ` αdm P F4zF2 , and

(iii) rBpα2em ` αfm, cq “ αcm ` α
2dm P F4zF2.

Note that tµ`ν|µ, ν P F4zF2u “ F2. Adding requirements (i) and (ii) together we have cm`dm`

α2cm `αdm “ αcm `α
2dm P F2, which clearly contradicts requirement (iii). Therefore XaPAΘpϕaq “

H, contradicting ∆ Ď XaPAΘpϕaq. Therefore no such ∆ exists.

Suppose now that m “ 1 and ∆ Ă θ1. Remark 1.22 implies for any a P singpΦ0q we have

Φapa ` cq “ 1. Expanding the left hand side as with the previous case we find rBpa, cq P F2. But

if a P singpΦ0q then λa P singpϕ0q for all λ P F4, so rBpa, cq “ 0. Let c “ c1e1 ` d1f1. Since

A “ te1, f1u Ă singpΦ0q, we have rBpe1, cq “ d1 “ 0 and rBpf1, cq “ c1 “ 0, a contradiction. Therefore

no such ∆ exists in this case. �

Let us briefly recall some facts about the field F8. Let P pαq “ α3 ` α ` 1 and recall that

F8 “ F2rαs{xP pαqy. Let K “ kerpTrq and note that with respect to our choice of characteristic

polynomial, K “ t0, α, α2, α4 “ α2 ` αu. Since Tr : F8 Ñ F2 is a homomorphism of F2-vector spaces,

K is the kernel of a homomorphism and is therefore closed under addition. It is not closed under scalar

multiplication over F8. The next Lemma demonstrates shows that no strongly incidence-transitive

codes with X∆ ď Sp2mp8q ¸ C3 exist for m ě 2.

Lemma 5.21

Let V “ F6m
2 with m ě 2. There is no subset ∆ Ă QεpV q such that X∆ ď Sp2mp8q ¸ C3 with X∆

acting transitively on ∆ˆ∆.

Proof. Suppose for the sake of contradiction that ∆ is such a subset and let ϕ0 P ∆. Further,

we may assume that |∆| ď 1
2 |Q

ε|. By Remark 1.22, for any subset A Ď ∆ we have ∆ Ď XϕPAΘpϕq.

Since X acts transitively on Qε we may assume without loss of generality that ϕ0 “ Tr ˝Φε0, where
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Φ`0 pxq “
m
ÿ

i“1

xiyi

Φ´0 pxq “
m
ÿ

i“1

xiyi ` x
2
m ` αy

2
m.

If a P singpΦ0q then λa P singpΦ0q for all λ P F8. By Remark 1.22 and Lemma 5.18, if Tr ˝Φc P ∆

then Φλapλa ` cq P K for all λ P F8. Note that Lemma 5.18 implies Φ0paq “ 0 and Φ0pcq “ 1.

Expanding the left hand side using equations (3.1) and (3.10) we have

Φλapλa` cq “ Φ0pλa` cq ` rBpλa` c, λaq2

“ λ2Φ0paq ` Φ0pcq ` rBpλa` c, λaq ` rBpa, λcq2

“ Φ0pcq ` λ rBpa, cq ` λ
2
rBpa, cq2

and therefore we arrive at the following condition

Φ0pcq ` λ rBpa, cq ` λ
2
rBpλa, cq2 P K for all λ P F8. (5.9)

Note that K “ t0, α, α2, α2`αu is closed under addition. Since Φ0pcq P K, Equation (5.9) implies

the weaker condition

λ rBpa, cq ` λ2
rBpa, cq2 P K for all λ P F8. (5.10)

Taking λ “ 1 in Equation (5.10) we see that rBpa, cq ` rBpa, cq2 P K. Since K is closed under

addition we see that either rBpa, cq P K or rBpa, cq “ 1. If rBpa, cq “ 1 then choosing λ R K Y t1u

in Equation (5.10), we find λ ` λ2 R K, a contradiction. So rBpa, cq ‰ 1. On the other hand if
rBpa, cq “ αi P K# then we take λ “ α3´i so that equation 5.10 gives α3 ` α6 R K. Therefore
rBpa, cq R K#. The only remaining possibility is rBpa, cq “ 0. Let c “

řm
i“1pciei ` difiq. We now

consider the cases ε “ ` and ε “ ´ separately.

If ε “ ` then the basis vectors tei, fiu
m
i“1 for W “ F2m

8 lie in singpΦ0q. Then taking a “ ei or fi

in turn and imposing the conditions rBpei, cq “ di “ 0 and rBpfi, cq “ ci “ 0 implied by equation 5.10,

we see that c “ 0, a contradiction.

If ε “ ´ then the vectors tei, fiu
m´1
i“1 lie in singpΦ0q. Then taking a “ ei or fi in turn and

imposing the conditions rBpei, cq “ di “ 0 and rBpfi, cq “ ci “ 0 implied by Equation (5.10), we see

that c “ cmem`dmfm. Further imposing Φ0pcq “ cmdm` c
2
m`αd

2
m “ 0 we find using Equation (5.6)

from Corollary 5.16 that | XaPAYt0u Θpϕaq| “ p4
1´1 ´ 1qp41 ` 1q “ 0, a contradiction to |∆| ě 1

2 |Q
´|.

Therefore, there is no subset ∆ Ă QεpV q such that X∆ ď Sp2mp8q¸C3 with X∆ acting transitively

on ∆ˆ∆. �

We finish this section by tying up loose ends associated with two special cases: the groups Sp2p4q¸

C2 ă Sp4p2q and Sp2p8q ¸ C3 ă Sp6p2q acting on elliptic quadratic forms. Since an elliptic form on a

two-dimensional space has no non-zero singular vectors, these groups act 2-transitively on Q´pV q.
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Lemma 5.22

Suppose ∆ Ă Q´ and X∆ acts transitively on ∆ˆ∆ where either

(i) V “ F4
2 and X∆ ă Sp2p4q ¸ C2, or

(ii) V “ F6
2 and X∆ ă Sp2p8q ¸ C3.

In case (i), X∆ is reducible. In case (ii), no ∆ with these properties exists.

Proof. In case (i) |Q´| “ 6 so without loss of generality |∆| ď 3. But by Lemma 5.1, if X∆ acts

irreducibly on V then |∆| ě 2n` 1 “ 5. Therefore any examples arising in case (i) are reducible.

In case (ii) |Q´| “ 28 and X∆ is irreducible so by Lemma 5.1 we may assume 7 ď |∆| ď 14. Since

X∆ acts transitively on ∆ ˆ∆ we must have |X∆| ě 8 ˆ p28 ´ 7q “ 147. Using the GAP command

‘ConjugacyClassesMaximalSubgroups’ and comparing the output with Table 8.1 in [39], every maximal

subgroup of G is conjugate to one of tSp2p8q, pF3
2¸C7q¸C3, D14¸C3, D18¸C3u. Since |D14¸C3| “ 42

and |D18 ¸ C3| “ 54 are both less than 147, while Sp2p8q and pF3
2 ¸ C7q ¸ C3 are transitive on

Q´, Lemma 1.17 implies X∆ must be contained in a subgroup of either Sp2p8q or pF3
2 ¸ C7q ¸ C3.

The maximal subgroups of Sp2p8q and pF3
2 ¸ C7q ¸ C3 are given by M1 “ tF3

2 ¸ C7, D14, D18u and

M2 “ tF3
2 ¸ C7, C7 ¸ C3, C2 ˆ A4u, respectively. Every group in M1 YM2 has order less than 147,

therefore no such ∆ exists. �

Combining the results of Lemmas 5.19, 5.20, 5.21 and 5.22 we arrive at the following conclusion.

Lemma 5.23

Let Γ be an X-strongly incidence-transitive code in JpQε, kq. If ∆ Ă QεpF2mb
2 q is a codeword with

X∆ ď Sp2mp2
bq ¸ Cb then X∆ is reducible and therefore Γ corresponds to one of the codes classified

in Chapter 4.

5.3. Classical subgroups

Recall that V “ pF2n
2 , Bq denotes a symplectic space with n ě 3 and X denotes the isometry group

of V . We fix a symplectic basis tei, fi | 1 ď i ď nu for V throughout Section 5.3. Since X acts

2-transitively on Qε for each ε P t`,´u, its action is primitive and the point stabilisers in the Jordan-

Steiner actions are maximal subgroups of X isomorphic to GO˘2np2q. Due to [38, Chapter 3] we know

these are the only maximal C8-subgroups of Sp2np2q. Suppose Γ Ă
`Qε
k

˘

is an X-strongly incidence-

transitive code and let ∆ be a codeword. If X∆ ď GOε
2np2q then by definition X∆ fixes an element of

Qε, which is possible if and only if k “ 1 or |Qε| ´ 1. Therefore we only consider the case ∆ Ă Qε and

X∆ ď GO´ε2n p2q. The results in Sections 1.1 and 3.4.2(e) of [35] show that GO´ε2n p2q acts transitively

on Qε for each ε P t`,´u; see line 6 of the PSp component of [35, Table 1]. We begin by calculating

the Gφ-orbits in singpφq for φ P Qε.
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Lemma 5.24

Let ϕ P Qε, ψ P Q´ε and G “ Xψ. Then the Gϕ-orbits in singpϕq are t0u, S0 and S1, where

S0 “ tx P singpϕqzt0u|x P singpψqu,

S1 “ tx P singpϕqzt0u|x R singpψqu.

Proof. By definition ψ and ϕ are fixed by Gϕ and therefore S0 and S1 are invariant under the

action of Gϕ. Since X acts transitively on Qε and Xϕ acts transitively on Q´ε, we may assume that

for all x “
řn
i“1pxiei ` yifiq P V we have

ϕpxq “

#

řn
i“1 xiyi if ε “ `

řn
i“1 xiyi ` x

2
n ` y

2
n if ε “ ´

(5.11)

ψpxq “

#

řn
i“1 xiyi ` x

2
n ` y

2
n if ε “ `

řn
i“1 xiyi if ε “ ´

(5.12)

Then ψpxq “ ϕpxq ` Bpx,wq with w “ en ` fn. Note that for all x P singpϕqzt0u and β P F2,

x P Sβ if and only if Bpx,wq “ β.

Let U “ ‘
n´1
i“1 xei, fiy and note that pU,ϕ|U q “ pU,ψ|U q is a hyperbolic quadratic space of di-

mension 2pn ´ 1q. Let L denote the subgroup of Gϕ fixing the subspace xen, fny pointwise. If g P X

fixes xen, fny pointwise then g P L if and only if g is an isometry of ϕ|U “ ψ|U on U . Therefore

L – GO`2n´2p2q.

We claim that Gϕ acts transitively on S0. If c P S0 then we may write c “
řn´1
i“1 pciei`difiq`αw.

Let pu, vq “ pe1, e1 ` f1 ` wq and note that u, v P S0 for both values of ε. To prove our claim,

it is sufficient to show that u and v lie in the same Gφ-orbit, and that c lies in the same Gφ-orbit

as at least one of u or v. First we show that there exists g P Gφ such that ug “ v. Define a

mapping g : V Ñ V which fixes the subspace ‘n´1
i“2 xei, fiy pointwise and permutes vectors of the form

x “ x1e1 ` y1f1 ` xnen ` ynfn according to the equation

xg “ x1e1 ` px1 ` y1 ` xn ` ynqf1 ` px1 ` xnqen ` px1 ` ynqfn. (5.13)

Let us verify that g P Gϕ. Indeed, setting φ1pxq “
řn
i“1 xiyi we have

φ1pxgq “x1px1 ` y1 ` xn ` ynq ` px1 ` xnqpx1 ` ynq (5.14)

“x1 ` x1y1 ` x1xn ` x1yn ` x1 ` x1xn ` x1yn ` xnyn

“x1y1 ` xnyn

“ϕ1pxq.

Therefore Equation (5.14) implies g P Xφ1 . Setting x1 “ y1 “ 0 and xn “ yn “ 1 in Equation (5.13)

implies wg “ w so g P Xw. Since ψpxq “ φpxq`Bpx,wq for all x P V , the previous two sentences show

that g P Gφ. Since g P Gφ and e1g “ e1 ` f1 `w, we observe that e1 and e1 ` f1 `w are contained in

the same Gφ-orbit. Therefore to show that Gφ is transitive on S0 it is sufficient to demonstrate that

c is contained in the same Gφ-orbit as either e1 or e1 ` f1 ` w. If α “ 0 then c, e1 P singpϕ|U q X U so

ϕ|U pcq “ ϕ|U pe1q. Therefore there exists an element h P L mapping e1 to c which, by Witt’s Theorem,

extends to an isometry on V . Similarly, if α “ 1 then there exists an element h1 P L mapping e1`f1`w
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to c which, by Witt’s Theorem, extends to an isometry on V . Therefore c lies in the same Gφ-orbit as

either e1, e1 ` f1 ` w and therefore Gϕ acts transitively on S0.

Next we claim that Gφ acts transitively on S1. If c P S1 then we may write c “
řn´1
i“1 pciei `

difiq ` αen ` pα ` 1qfn for some α P F2. Let pu, vq “ pe1 ` en, e1 ` fnq if ε “ ` and pu, vq “

pe1` f1` en, e1` f1` fnq if ε “ ´. Note that u, v P S1 and therefore to show that Gφ is transitive on

S1 it is sufficient to show that u and v lie in the same Gφ-orbit, and that c lies in the same Gφ-orbit

as at least one of u or v. Define a map g : V Ñ V which swaps en and fn while fixing the subspace

U “ ‘n´1
i“1 xei, fiy pointwise. Clearly g P Gϕ and for either ε P t`,´u we have ug “ v. Moreover, we

have pU, φ|U q “ pU,ψ|U q. If α “ 1 then there exists an element h P L mapping u to c which, by Witt’s

Theorem, extends to an isometry on V . If α “ 0 then there exists an element h1 P L mapping v to c

which, by Witt’s Theorem, extends to an isometry on V . This proves our claim that Gφ is transitive

on S1.

Therefore the sets S0 and S1 are Gφ-orbits. �

Corollary 5.25

Let ϕ0 P Qε, ψ P Q´ε. The orbits of Gϕ0
in Qεztϕ0u are

θ0 “ tϕc P Qε|c P S0u,

θ1 “ tϕc P Qε|c P S1u.

Proof. By Lemma 3.9, the action of Gϕ0
on Qε is permutationally isomorphic to the action

of Gϕ0
on singpϕ0q. Therefore Lemma 5.24 implies that the orbits of Gϕ0

in Qεztϕ0u are as stated

above. �

Lemma 5.26

Let G “ GO´ε2n p2q with n ě 3 and suppose ∆ P
`Qε
k

˘

with k ď 1
2 |Q

ε| and X∆ ď G. If X∆ acts

transitively on ∆ˆ∆ then for all ϕ0 P ∆ we have

∆ Ď

#

θ1 if ε “ `

θ0 if ε “ ´
(5.15)

Proof. We assume n ě 3 on account of Lemma 5.1. Let ϕ0 P ∆ and denote by ψ the quadratic

form fixed by G. By Lemma 3.13 we have | singpψq X singpϕ0q| “ 22pn´1q, so |θ0| “ 22pn´1q ´ 1 and

1

2
|Qε| ´ |θ0| “2n´2p2n ` εq ´ p22pn´1q ´ 1q

“1` ε2n´2.

Therefore |θ0| ă
1
2 |Q

`| for all n ě 3 while |θ0| ą
1
2 |Q

´| for all n ě 3. Since ∆ is an X∆,ϕ0
-orbit and

X∆ ď G, it follows that ∆ must be contained in an Gϕ0
-orbit. The assumption |∆| ď 1

2 |Q
ε| then

implies ∆ satisfies Equation (5.15). �

Lemma 5.26 enables us to apply Remark 1.22. Recall that for each ϕ P ∆ there exists a unique

Gϕ-orbit in Qε containing ∆ which we denote by Θpϕq.
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Lemma 5.27

For n ě 3 there exists no proper subset ∆ Ă Q` such that X∆ ď GO´2np2q with X∆ acting irreducibly

on V “ F2n
2 and transitively on ∆ˆ∆.

Proof. By Lemma 5.26, ∆ Ď θ1. Let ϕ0pxq “
řn
i“1 xiyi, w “ en ` fn, ψpxq “ ϕ0pxq ` Bpx,wq

and G “ Xψ – GO´2np2q. From [35, Table 1] we have that G is transitive on Q` so we may assume

ϕ0 P ∆. Let A “ tei, fi | 1 ď i ď n ´ 1u. For all a P A we have ϕ0paq “ ψpaq “ 0, therefore Lemma

5.26 implies tϕa P Qε | a P Au Ď ∆. Let c “
řn
i“1pciei ` difiq. If ϕ P ∆ with ϕ0pxq ` ϕpxq “ Bpx, cq

then Remark 1.22 implies ϕ P Θpϕ0q, and so Lemma 5.26 implies that ψpcq “ Bpc, wq “ cn` dn “ 1 is

a necessary condition on c. Moreover, for all a P A and ϕc P ∆ we have ϕapxq ` ϕcpxq “ Bpx, a` cq.

Remark 1.22 implies ϕc P Θpϕaq, and so Lemma 5.26 implies

ψpa` cq “ 1 for all a P A. (5.16)

We may expand the left hand side of Equation (5.16) as follows

ψpa` cq “ ϕ0pa` cq `Bpa` c, wq

“ ϕ0paq ` ϕ0pcq `Bpa, cq `Bpa,wq `Bpc, wq (5.17)

“ Bpa, cq `Bpa,wq `Bpc, wq.

Adding Equation (5.16) to (5.17) and rearranging we find

Bpa, cq `Bpa,wq `Bpc, wq “ 1 for all a P A. (5.18)

Noting that Bpei, cq “ di, Bpfi, cq “ ci, Bpa,wq “ 0 and Bpc, wq “ cn ` dn, we may apply Equation

(5.18) to the elements of A and obtain

ci ` cn ` dn “ 1

di ` cn ` dn “ 1

for all 1 ď i ď n´ 1. Therefore ci “ di “ cn ` dn ` 1 for all 1 ď i ď n´ 1. We see therefore that for

n ě 3, if ϕc P XaPAYt0uΘpϕaq then c “ cnen ` dnfn ` pcn ` dn ` 1q
řn´1
i“1 pei ` fiq for some cn, dn P F2

with cn ‰ dn. Therefore

|∆| ď | XaPAYt0u Θpϕaq| ď 2.

This contradicts the assumption |∆| ě 1
2 |Q

`|, therefore no such ∆ exists. �

Lemma 5.28

For n ě 3 there exists no proper subset ∆ Ă Q´ such that X∆ ď GO`2np2q with X∆ acting irreducibly

on V “ F2n
2 and transitively on ∆ˆ∆.

Proof. By Lemma 5.26, ∆ Ď θ0. Let ϕ0pxq “
řn
i“1 xiyi`xn`yn and G “ Xψ – GO`2np2q where

ψpxq “
řn
i“1 xiyi. From [35, Table 1] we have that G is transitive on Q´ so we may assume ϕ0 P ∆.

For all x P V , ψpxq “ ϕ0pxq ` Bpx,wq, where w “ en ` fn. Let A “ tei ` fi ` en|1 ď i ď n ´ 1u.

For all a P A we have ϕ0paq “ 0 and ψpaq “ 1, therefore Lemma 5.26 implies φa P ∆ for all a P A.
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Let c “
řn
i“1pciei ` difiq. Suppose ϕ P ∆ with ϕ0pxq ` ϕpxq “ Bpx, cq. Then for all a P A we have

ϕapxq ` ϕcpxq “ Bpx, a` cq. Therefore Remark 1.22 and Lemma 5.26 imply

ψpcq “ Bpc, wq “ cn ` dn “ 0 (5.19)

and

ψpa` cq “ 0 for all a P A. (5.20)

Expanding the left hand side of Equation (5.20) we have

ψpa` cq “ ϕ0pa` cq `Bpa` c, wq

“ ϕ0paq ` ϕ0pcq `Bpa, cq `Bpa,wq `Bpc, wq

“ Bpa, cq `Bpa,wq `Bpc, wq

and therefore if ϕc P ∆ we must have

Bpa, cq `Bpa,wq `Bpc, wq “ 0 for all a P A. (5.21)

Noting that

Bpc, wq “ cn ` dn

Bpei ` fi ` en, cq “ ci ` di ` dn

Bpei ` fi ` en, wq “ 1

we apply Equation (5.21) to the elements of A and obtain

ci ` di ` cn ` 1 “ 0 (5.22)

for 1 ď i ď n´1. Therefore di “ ci`cn`1 for all 1 ď i ď n´1. Therefore |∆| ď |XaPAYt0uΘpϕaq| ď 2n.

But if n ě 3 then 2n´2n´2p2n´1q “ 2n´2p5´2nq ă 0, a contradiction to the assumption |∆| ě 1
2 |Q

´|.

Therefore no such ∆ exists for n ě 3. �

Combining the results of Lemma 5.27 and Lemma 5.28 we arrive at the following.

Theorem 5.29

Let V “ F2n
2 . There exists no subset ∆ Ă Qε such that X∆ ď GO´ε2n p2q acts transitively on ∆ ˆ ∆

and irreducibly on V .

5.4. Fully deleted permutation modules

Let X “ Sp2np2q in either of its doubly-transitive actions of degree 22n´1 ˘ 2n´1. In Section 5.4

we study X-strongly incidence-transitive codes Γ Ă
`Qε
k

˘

where, for ∆ P Γ, X∆ acts on V as a fully

deleted permutation module for a symmetric or alternating group. Technically, these are subgroups of

Aschbacher type C9, but the mathematics of Section 5.4 fits naturally within Chapter 5. We begin

with a description of the fully deleted permutation modules which follows [38, Section 5.3]. Let m ě 5

and denote by W the vector space Fm2 with ordered basis B “ te1, e2, . . . , emu. For all σ P Sm and for
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all x “
řm
i“1 xiei P V we define

xσ “
m
ÿ

i“1

xiσ´1ei. (5.23)

Equation (5.23) defines a group action of Sm on W . The F2G-module W is called the permutation

module for G. Let x “
řm
i“1 xiei and y “

řm
i“1 yiei. We equip W with a G-invariant symmetric

bilinear form rB : W ˆW Ñ F2 defined by

rBpx, yq “
m
ÿ

i“1

xiyi.

The weight of a vector x “
řm
i“1 xiei is defined to be the number of indices i such that xi ‰ 0. We

denote the weight of x by wtpxq. The action defined by Equation (5.23) is clearly weight preserving.

Let j “
řm
i“1 ei and let A “ tx PW | Bpx, jq “ 0u be the subspace of even-weight vectors in W . Then

AK “ tαj | α P F2u. By [38, Lemma 5.3.4], A and AK are the only proper, nontrivial G-invariant

subspaces of W . The restriction of rB to A is an alternating bilinear form with radical A X AK. We

define a F2G-module V by

V “ A{pAXAKq.

This is is known as the fully deleted permutation module for G. We note that A X AK is nontrivial if

and only if AK ď A, which occurs if and only if m is even. It follows that

dimpV q “

#

m´ 2 if m is even

m´ 1 if m is odd

Following Lemma 3.3, we define a symplectic form B : V ˆ V Ñ F2 by

Bpx`AXAK, y `AXAKq “ rBpx, yq.

The action of G on V is faithful, absolutely irreducible and preserves the symplectic form B.

Lemma 5.30 ([38], pg. 187)

Let m be an integer with m ě 5. The function Φ : AÑ F2 defined by

Φpxq “

#

0 if wtpxq ” 0 mod 4

1 if wtpxq ” 2 mod 4
(5.24)

is a quadratic form on A which polarises to rB. Moreover, Φ is invariant under the action of G “ Sm

on A defined by Equation (5.23).

If m is odd then V – A and if m is even then V – A{AK, In either case Φ, as defined in Lemma

5.30, is a G invariant quadratic form on A. Moreover, if m is even then for each 2n-dimensional

subspace U of A which does not contain AK, Lemma 3.8 implies Φ ˝ π|´1
U is a quadratic form on V

which polarises to B, where π denotes the natural projection map from A to A{AK. We investigate

this process in more detail in Lemma 5.32, but first we note the following embeddings.

Lemma 5.31 ([38], pg. 187)

Let m be an integer with m ě 5 and consider the action of G “ Sm on A defined by Equation (5.23)
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along with the induced action on V . Then G is fixed point free on QpV q if and only if m ” 2 mod 4.

In particular, if m ı 2 mod 4 then we have the following embeddings of G into an orthogonal group:

S2n`2 ď

#

GO´2np2q if n ” 1 mod 4,

GO`2np2q if n ” 3 mod 4

S2n`1 ď

$

’

&

’

%

GO`2np2q if n ” 0 mod 4,

GO´2np2q if n ” 2 mod 4,

GO¯2np2q if n ” ˘1 mod 4.

Since we are assuming that X∆ acts irreducibly on V , we may also assume m “ 2n ` 2 with n

even. For if m ı 2 mod 4 then Lemma 5.31 implies Sm is a subgroup of GOε
2np2q for some ε P t˘u

and therefore Theorem 5.29 implies X∆ is reducible.

Lemma 5.32

Let n ě 4 and G “ S2n`2. Let V “ A{AK be the fully deleted permutation module for G and set

j “
ř2n`2
i“1 ei. For all hyperplanes U ď A which avoid AK “ xjy, the mapping ϕ : V Ñ F2 defined by

ϕpx`AKq :“ Φ ˝ π|´1
U px`A

Kq “

#

Φpxq if x P U

Φpx` jq if x R U
(5.25)

is a quadratic form on V which polarises to B.

Proof. Since U is a hyperplane in A which avoids AK, Lemma 5.32 follows directly from Lemma

3.8. However, we also provide a direct proof.

We show first that ϕ is well defined. Let x`AK, y`AK P V and suppose x`AK “ y`AK. Then

y “ x or y “ x` j. If x “ y then clearly ϕpx` AKq “ ϕpy ` AKq. Suppose y “ x` j. Then y P U if

and only if x R U . In particular, if x P U then Equation (5.25) implies

ϕpy `AKq “ ϕpx` j`AKq “ Φpx` j` jq “ Φpxq “ ϕpx`AKq.

Similarly, if x R U then Equation (5.25) implies

ϕpy `AKq “ ϕpx` j`AKq “ Φpx` jq “ ϕpx`AKq.

Therefore ϕ is well defined. Next note that if λ P F2 and x P A X U then ϕpλx ` AKq “ Φpλxq “

λ2Φpxq “ ϕpx ` AKq. Finally we show that ϕ polarises to B. Without loss of generality, assume

x, y P U . Then using the fact that Φ is a quadratic form on A which polarises to the degenerate

symplectic form rB, we have

ϕpx`AK ` y `AKq “ Φpx` yq “ Φpxq ` Φpyq ` rBpx, yq

“ ϕpx`AKq ` ϕpy `AKq `Bpx`AK, y `AKq.

Thus ϕ is a quadratic form on V which polarises to B. �

It is convenient to fix some notation at this point.
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Definition 5.33

For the remainder of Section 5.4 we set U “ xe1, e2, . . . , e2n`1y and H0 “ A X U . In addition, we set

ϕ0 “ Φ ˝ π´1|H0
where Φ is the quadratic form on A defined in Lemma 5.30. Note that H0 is the set

of even weight vectors in W whose last coordinate is equal to zero, so H0 is a hyperplane in A which

does not contain AK. In particular, H0 “ xei ` ei`1 | 1 ď i ď 2ny.

Lemma 5.34

The quadratic form ϕ0 of Definition 5.33 is hyperbolic if n ” 0 mod 4 and elliptic if n ” 2 mod 4.

Proof. We will determine the type of ϕ0 by counting the number of ϕ0-singular vectors in V “

A{AK. We assume that each coset representative x P x ` AK lies in H0 so that Lemma 5.32 implies

ϕ0px`A
Kq “ Φpxq. Therefore

singpϕ0q “ tx`A
K P V | x P AX U, 4 divides wtpxqu (5.26)

from which it follows

| singpϕ0q| “

n{2
ÿ

l“0

ˆ

2n` 1

4l

˙

. (5.27)

Series’ of this form were studied by Ramus in 1834. In particular, the formula on the cover page of

[58] states that

Spm,n, qq :“
m
ÿ

k“0

ˆ

m

nk ` q

˙

(5.28)

“
1

n

n
ÿ

k“1

2m cosm
ˆ

kπ

n

˙

cos

ˆ

pm´ 2qqkπ

n

˙

. (5.29)

We may change the upper bound in Equation (5.27) from n{2 to 2n ` 1 since terms with l ą n{2

contribute nothing to the sum. Substituting the appropriate values in to Equation (5.29) we have

| singpϕ0q| “Sp2n` 1, 4, 0q

“
1

4

4
ÿ

l“1

ˆ

2 cos

ˆ

lπ

4

˙˙2n`1

cos

ˆ

p2n` 1qlπ

4

˙

“22n´1

˜

´

cos
´π

4

¯¯2n`1

cos

ˆ

p2n` 1qπ

4

˙

`

´

cos
´π

2

¯¯2n`1

cos

ˆ

p2n` 1qπ

2

˙

`

ˆ

cos

ˆ

3π

4

˙˙2n`1

cos

ˆ

3p2n` 1qπ

4

˙

` pcos pπqq
2n`1

cos pp2n` 1qπq

¸

“22n´1

˜

ˆ

1
?

2

˙2n`1

p´1qn{2
1
?

2
` 0`

ˆ

´
1
?

2

˙2n`1

p´1q
n
2´1 1

?
2
` 1

¸

“22n´1

ˆ

1` p´1qn{2
1

2n

˙

“2n´1
´

2n ` p´1qn{2
¯

.
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Therefore the number of ϕ0-singular elements of V is

| singpϕ0q| “

#

2n´1p2n ` 1q if n ” 0 mod 4,

2n´1p2n ´ 1q if n ” 2 mod 4.
(5.30)

Comparing Equation (5.30) with |Qε| “ 2n´1p2m`εq, we see that ϕ0 is hyperbolic when n ” 0 mod 4

and elliptic when n ” 2 mod 4. �

Lemma 5.35

Let G “ S2n`2 with n ě 4, n even and let V be the fully deleted permutation module for G over F2.

For each integer i with 1 ď i ď 2n ` 1 we denote by τi the transposition pi, i ` 1q P G. If ϕ0 is the

quadratic form defined in Definition 5.33 then Gϕ0 “ xτi | 1 ď i ď 2ny – S2n`1 and ϕ
τ2n`1

0 “ ϕd,

where d “
ř2n
i“1 ei `A

K.

Proof. Suppose v “ x`AK P V with x P H0. Define P “ xτi | 1 ď i ď 2ny and note P – S2n`1.

Then for any g P P and we have

ϕg0px`A
Kq “ϕ0px

g´1

`AKq

“Φpxg
´1

q (since x P Uq

“Φpxq (since g is weight preserving)

“ϕ0px`A
Kq.

Therefore P ď Gϕ0 . But P is maximal in G, so Gϕ0 is equal to either P or G. In particular,

H
τ2n`1

0 “ xei ` ei`1, e2n ` e2n`2 | 1 ď i ď 2n´ 1y so τ2n`1 does not fix H0. By Lemma 3.8 we have

ϕ
τ2n`1

0 “ pΦ ˝ π´1|H0q
τ2n`1 “ Φ ˝ π´1|

H
τ2n`1
0

,

therefore τ2n`1 R Gϕ0 and Gϕ0 “ P .

Finally, we calculate d P V such that ϕd “ ϕ
τ2n`1

0 using a method similar to the proof of Lemma 3.9.

Let ϕ “ ϕ
τ2n`1

0 . Set S “ H0XH
τ2n`1

0 “ xei` ei`1 | 1 ď i ď 2n´ 1y. Then S is a p2n´ 1q-dimensional

subspace of A which avoids AK, so S{AK is a p2n ´ 1q-dimensional subspace of V . Therefore there

exists a unique c P V such that S{AK “ xcyK. Specifically, S{AK “ xei ` ei`1 ` A
K | 1 ď i ď 2n´ 1y

and therefore setting d “
ř2n
i“1 ei ` AK “ e2n`1 ` e2n`2 ` AK we have d P pS{AKqK and therefore

c “ d. Now let x P V . Since ϕ0 “ Φ ˝ π´1|H0 and ϕ “ Φ ˝ π´1|
H
τ2n`1
0

, we have ϕ0pxq “ ϕpxq if and

only if x P S{AK. On the other hand, ϕ0pxq ‰ ϕpxq if and only if x R S{AK “ xdyK if and only if

Bpx, dq “ 1. Therefore ϕpxq “ ϕ0pxq`Bpx, dq for all x P V , so ϕ “ ϕd. This completes the proof. �

Lemma 5.36

Let n ě 4 with n even and G “ S2n`2. Let W be the permutation module for G, A the subspace

of even weight vectors in W and V the fully deleted permutation module for G. Let ϕ0 denote the

quadratic form from Definition 5.33. Then the G-orbits in Q are the sets

θi “ tϕc`AK P Q | c P AX U and wtpcq P t2i, 2pn´ iquu
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where 0 ď i ď n
2 . If ϕ0 is type ε then we have

θi Ď

#

Qε if i is even

Q´ε if i is odd.
(5.31)

In particular, the number of G-orbits in Qε is

#orbits “

#

1` tn4 u if ε “ `

rn4 s if ε “ ´.
(5.32)

Proof. By Definition 5.33, ϕ0 “ Φ ˝ π´1
H0

with U “ xe1, e2, . . . , e2n`1y and H0 “ A X U . If

c ` AK P V then we may assume without loss of generality that c P H0, since A “ H0 ‘ AK. Note

that G “ xτi | 1 ď i ď 2n ` 1y and by Lemma 5.35, Gϕ0 “ xτi | 1 ď i ď 2ny. We begin by showing

that the sets θk are G-invariant. Let ϕ P θk. Then there exists a unique c ` AK P V “ A{AK

such that ϕ “ ϕc`AK , and since ϕ P θk, wtpcq P t2k, 2pn ´ kqu by definition of θk. By Lemma

3.9, we have ϕτi
c`AK

“ ϕcτi`AK . In particular, if 1 ď i ď 2n then τi fixes the hyperplane H0 of

A and therefore cτi P H0 and wtpcτiq “ wtpcq. Therefore ϕτi
c`AK

P θk for 1 ď i ď 2n. On the

other hand, Corollary 3.12 and Lemma 5.35 imply ϕ
τ2n`1

c`AK
“ ϕcτ2n`1`y`AK , where y “

ř2n
i“1 ei. Since

wt pcτ2n`1 ` yq P tk, 2pn´ kqu, it follows ϕ
τ2n`1

c`AK
P θk. Therefore the sets θk are G-invariant.

Next we show that the sets θk are G-orbits. Suppose ϕc`AK , ϕc1`AK P θk and assume c, c1 P H0.

Claim: If wtpcq “ wtpc1q then there exists an element of Gϕ0 mapping ϕc`AK to ϕc1`AK .

Indeed, If wtpcq “ wtpc1q then, since c, c1 P H0, the final coordinate of both c and c1 is equal to

zero and therefore there is an element of Gϕ0 “ xτi | 1 ď i ď 2ny – S2n`1 mapping c to c1. It follows

from Lemma 3.9 that there exists an element of Gϕ0 mapping ϕc`AK to ϕc1`AK .

Suppose instead that wtpcq ‰ wtpc1q. Without loss of generality we assume that wtpcq “ 2k and

wtpc1q “ 2pn ´ kq. Define ck “
ř2k
i“1 ei and note that since 1 ď k ď n

2 we have ck P H0, ϕck`AK P θk

and wtpckq “ 2k “ wtpcq. By the claim, there exists an element of Gϕ0
mapping ϕc`AK to ϕck`AK .

Let σ “ τ2n`1 and note that σ fixes ck for each k P r1 : n{2s. By Corollary 3.12 and Lemma 5.35, for

all x P V we have

ϕσck`AKpxq “ ϕcσk`y`AK “ ϕck`y`AK ,

where y “
ř2n
i“1 ei. But ck` y P H0 and wt pck ` yq “ 2pn´ kq “ wtpc1q, so the previous claim implies

there exists an element of Gϕ0 – S2n`1 mapping ck ` y to c1 and it follows from Lemma 3.9 that the

same element maps ϕck`y`AK to ϕc1`AK .

Therefore, there exists an element of G, contained in the double coset Gϕ0τ2n`1Gϕ0 , which maps

ϕc`AK to ϕc1`AK , that is, θk is a G-orbit.

Having determined the G-orbits in Q, it remains to determine the type ε of each orbit and count

them. By Lemma 5.34, an orbit representative ϕck P θk has the same type as ϕ0 if an only if k is even.

Equation (5.31) follows. For ε “ ` or ´, the number of orbits in Qε is determined respectively by the

number of solutions to the equations 0 ” s mod 4 and 2 ” s mod 4 with 0 ď s ď n
2 . The number of

G-orbits is therefore given by equation (5.32). �

Lemma 5.37

Let X “ Sp2np2q and let V “ F2n be the fully deleted permutation module for S2n`2. Suppose
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Γ Ă
`Qε
k

˘

is an X-strongly incidence-transitive code with ∆ P Γ and X∆ ď S2n`2. Then n “ 4, ε “ `

and either θ0 P Γ or θ2 P Γ, as defined in Lemma 5.36. Conversely, the orbits θX0 and θX2 are X-strongly

incidence-transitive codes which lie respectively in Johnson graphs Jp136, 10q and Jp136, 126q.

Proof. If ε “ ` and n ą 6, or n ą 8 and ε “ ´, then Lemma 5.36 implies G has at least three

orbits in Qε. We use GAP [59] to analyse the remaining cases:

(a) If n “ 4 and ε “ ` then G “ S10 and Lemma 5.36 implies the G-orbits in Q` are θ0 and θ2. Let

∆ “ θ0 and recall H0 “ xei ` ei`1 | 1 ď i ď 2n ´ 1y. Then ∆ “ tϕc`AK | c P H0,wtpcq “ 4u

and Gϕ0
– S9 acts transitively on ∆. Therefore ∆X is a strongly incidence-transitive code in

Jp136, 10q and ∆
X

is a strongly incidence-transitive code in Jp136, 126q.

(b) If n “ 6 and ε “ ` then G “ S14 and Lemma 5.36 implies the G-orbits in Q` are θ1 and θ3. If

ϕ P θ1 and ψ P θ3 then Gϕ – S11 ˆ S3 and Gψ – A7 ˆ A7 : D8. The group Gψ has two orbits in

θ1, as does Gϕ in θ3.

(c) If n “ 4 and ε “ ´ then G “ S10 and Lemma 5.36 implies G acts transitively on θ1 “ Q´.

Therefore X∆ must be a proper subgroup of G. If ϕ P Q´ then Gϕ – S7 ˆ S3. The only Gϕ-

orbit with length at least 1
2 |Q

´| has length 63, so 57 ď k ď 60. Moreover, invoking the fact

that |∆ ˆ ∆| “ kp120 ´ kq divides |G| “ 10!, we find the only possibility is |∆| “ 60. There

are two conjugacy classes of maximal subgroups of S10 with order divisible by 602; these have

isomorphism type A5 ˆ A5 : D8 and A10. The former group has orbit lengths 20 and 100 in Q´,

so X∆ ‰ A5 ˆ A5 : D8. The latter group is transitive on Q´ so we assume X∆ ă A10. The

is a unique conjugacy class of maximal subgroups of A10 with order divisible by 60; these have

isomorphism type A5ˆA5 : C4, but have orbit lengths 20 and 100 in Q´. Therefore no X-strongly

incidence-transitive codes arise in this case. See Program D.4 for the relevant GAP code.

(d) If n “ 6 and ε “ ´ then G “ S14 and Lemma 5.36 implies the G-orbits in Q´ are θ0 and θ2. If

ϕ P θ1 and ψ P θ3 then Gϕ – S13 and Gψ – S9 ˆ S5. The group Gϕ has two orbits in θ0, as does

Gψ in θ2.

(e) If n “ 8 and ε “ ´ then G “ S18 and Lemma 5.36 implies the G-orbits in Q´ are θ1 and θ3. If

ϕ P θ1 and ψ P θ3 then Gϕ – S15ˆS3 and Gψ – S11ˆS7. The groups Gϕ and Gψ are intransitive

on θ1 and θ3.

Therefore the only strongly incidence-transitive codes which arise from the fully deleted permutation

modules for the symmetric and alternating groups are θX0 Ă Jp136, 10q and θX2 Ă Jp136, 126q. �

The X-strongly incidence-transitive codes θX0 Ă Jp136, 10q and θX2 Ă Jp136, 126q are block sets

of 2-p136, 10, 64q and 2-p136, 126, 11200q designs, respectively. Each contains 13056 blocks. The inter-

section numbers for the first code were calculated in GAP [59]; they are 6, 8, 9 and 10. In particular,

δ “ 6 for both codes and therefore both codes are neighbour-transitive by Theorem 1.9.

Remark 5.38

Looking back at Chapters 4 and 5, we have provided constructions for each of the codes which are

described in Theorem 4.3, and proved that no other examples arise when X∆ is contained in a geometric
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maximal subgroup of X or X∆ acts on V as a subgroup of the fully deleted permutation module for

the alternating or symmetric groups.





CHAPTER 6

Almost-simple codeword stabilisers

Problem: Let G be a subgroup of X “ Sp2np2q of Aschbacher type C9. Classify the X-strongly

incidence transitive codes Γ Ă
`Qε
k

˘

with X∆ “ G for ∆ P Γ.

6.1. Introduction

Let V “ pF2n
2 , Bq be a symplectic space with isometry group X “ Sp2np2q. Let Qε be the set of all

ε-type quadratic forms on V which polarise to B. Let Γ Ă
`Qε
k

˘

be an X-strongly incidence-transitive

code with ∆ P Γ and 3 ď |∆| ď 2n´1p2n ` εq ´ 3. Recall that the fully deleted permutation modules

for the alternating and symmetric groups were treated in Section 5.4, leading to the construction of a

pair of complementary strongly incidence-transitive codes. In Chapter 6 we work towards a proof that

no further examples of strongly incidence-transitive codes of Jordan-Steiner type exist with X∆ P C9.

See Chapter 8 for an outline open cases.

Definition 6.1

If X is a classical group and G ď X then G P C9 if the following conditions hold:

(a) G is not contained in any Aschbacher class Ci for any i P r1 : 8s,

(b) the action of G on its natural module is absolutely irreducible, and

(c) there exists a nonabelian simple group T such that T Ĳ G{ZpGq ď AutpT q.

If X “ Sp2np2q then ZpXq is trivial, therefore if G is a C9-subgroup of X then G itself is almost-

simple. Moreover, if Γ is an X-strongly incidence-transitive code and ∆ P Γ with X∆ contained in a

maximal C9 subgroup of X, Lemma 1.17 implies that either G “ X∆, or G acts transitively on Qε. The

maximal subgroups G for which the latter case holds are listed in [35, Tables 2 and 3]. The associated

factorisations are Sp8p2q “ S10 GO´8 p2q, Sp6p2q “ G2p2qGOε
6p2q and Sp8p2q “ L2p17qGO`8 p2q. The

former of these is considered in Lemma 5.37. The latter pair are to be studied in Lemmas 6.5 and 6.6.

In all other cases, we assume without loss of generality that X∆ is a maximal C9-subgroup of X.

Lemma 1.15 implies that X∆ must admit a nontrivial factorisation. The maximal factorisations

of the classical simple groups of Lie type are known, and all factorisations of the exceptional simple

groups of Lie type and the sporadic groups are known [35, 60, 36]. The main problem in Chapter 6

is identifying which of these, if any, are associated with the Jordan-Steiner actions.

If T is a classical simple group then usually there are more factorisations that we wish to deal

with directly. In this case we combine Lemma 6.9 with lower bounds on the dimension of the minimal

77
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modules for T to rule out the majority of factorisations and then decide which of the remaining

factorisation can be associated with the Jordan-Steiner actions.

Throughout Chapter 6, for any z P Z we denote by νepzq the largest power of 2 which divides z.

We set νopzq “ z{νepzq. These are called, respectively, the even and odd parts of z.

Lemma 6.2

Let X “ Sp2np2q and suppose Γ Ă
`Qε
k

˘

is an X-strongly incidence-transitive code with ∆ P Γ. Then

for ϕ P ∆ and ψ P ∆ we have

νop|X∆ : X∆,ϕ| ` |X∆ : X∆,ψ|q “ νep|X∆ : X∆,ϕ| ` |X∆ : X∆,ψ|q ˘ 1.

Proof. We have |Qε| “ 2n´1p2n ` εq so νep|Qε|q “ 2n´1 and νop|Qε|q “ 2n ` ε. Therefore

νop|Qε|q “ 2νep|Qε|q˘ 1. But Lemma 1.15 implies |Qε| “ |X∆ : X∆,ϕ| ` |X∆ : X∆,ψ|, which completes

the proof. �

Lemma 6.3

Let X “ Sp2np2q and suppose Γ Ă
`Qε
k

˘

is an X-strongly incidence-transitive code with ∆ P Γ. If X∆

is almost-simple with socle T then |AutpT q| ą 22pn´1q. In particular, if epT q denotes the minimum

dimension of an F2T -module then log2p|AutpT q|q ´ epT q ` 2 ą 0.

Proof. Since X∆ acts transitively on ∆ˆ∆ we have |X∆| ě |∆ˆ∆| “ |∆| p|Qε| ´ |∆|q . Therefore

|Qε| ď |∆|` |X∆|

|∆| . Also, |∆| ě 2, so |∆|` |X∆|{|∆| ď |X∆| ď |AutpT q| and therefore |Qε| ď |AutpT q|.

Finally, |Qε| ě 2n´1p2n ´ 1q ą 22pn´1q therefore |AutpT q| ě 22pn´1q. Moreover, by definition, epT q ď

2n and therefore |AutpT q| ą 2epT q´2. Applying log2 to both sides of the inequality and rearranging

completes the proof. �

Lemma 6.4

Let X “ Sp2np2q and suppose Γ Ă
`Qε
k

˘

is an X-strongly incidence-transitive code with k ě 2 and

∆ P Γ. If X∆ is almost-simple with socle T and X∆ acts irreducibly on V “ F2n
2 then T is fixed point

free on Qε and Xϕ does not contain T for any ϕ P Qε.

Proof. Consider first the induced action of T on ∆. Since T Ĳ G, every T -orbit in ∆ has the

same length and therefore the action of T on ∆ is either trivial or fixed point free. If T acts trivially

on ∆ then, since k ě 2, there exists ϕ0, ϕc P ∆ with c ‰ 0. Lemma 3.8 implies c is fixed by G. This

contradicts the assumption that G acts reducibly on V , so T acts nontrivially on ∆. In particular,

every T -orbit in ∆ has length greater than one and therefore T is fixed point free in ∆. Application

of the same argument to ∆ shows that T is fixed point free on Qε. Finally, note that for all ϕ P Qε

the group Xϕ fixes ϕ by definition. Therefore T is not contained in Xϕ for any ϕ P Qε. �

In [61] Praeger and Seress provide bounds on the order of a finite classical group. Their upper

bounds are presented in Table 6.1 below along with a weaker upper bound on |AutpT q| of the form
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T Upper bound on |AutpT q| using [61] Weakened upper bound on |AutpT q|

PSLmpqq
2f
q´1q

m2

2qm
2

PSUmpqq
8f

3pq`1qq
m2 2

3q
m2

PSp2mpqq fqmp2m´1q q2m2
´m`1

PΩ˝2m`1pqq fqmp2m`1q q2m2
`m`1

PΩε2mpqq 2fqmp2m´1qp1´ εq´mq 10
4 q

2m2
´m`1

Table 6.1. Upper bounds on the order of the automorphism group of a classical
simple group. Note that q “ pf .

cqppmq, where c is a constant and ppmq is a polynomial. We use the bounds in Table 6.1 in combination

with Lemma 6.3 in Sections 6.3 and 6.4.

6.2. Some basic results in dimension at most twelve

Before we begin our general calculations for Chapter 6 we note that the C9-subgroups of Sp2np2q for

n ď 6 are enumerated in [39]. Excluding the fully deleted permutation modules for the symmetric

and alternating groups, the maximal C9-subgroups of Sp2np2q for 3 ď n ď 6 are G2p2q ă Sp6p2q,

PSL2p17q ă Sp8p2q and PSL2p25q.22 ă Sp12p2q. We show below that there are no X-strongly incidence-

transitive codes associated with these maximal subgroups.

Lemma 6.5

Let X “ Sp6p2q and consider the maximal subgroup M “ G2p2q of X. There does not exist an

X-strongly incidence-transitive code Γ Ă
`Qε
k

˘

such that X∆ ďM for ∆ P Γ.

Proof. Suppose Γ Ă
`Qε
k

˘

is an X-strongly incidence-transitive code. Let ∆ P Γ and assume

X∆ ď M . By [35, Section 1.3, Table 2], G2p2q acts transitively on Qε. Strong incidence-transitivity

implies X∆ has two orbits in Qε, therefore X∆ is a proper subgroup of G2p2q. Without loss of generality

we may assume 2k ă v “ 22p23`εq. By definition, X∆ acts transitively on ∆ˆ∆ and therefore kpv´kq

divides |X∆|, which in turn divides |G2p2q|. Using Program D.2 we determine that if ε “ ` then k “ 8

or 12, and if ε “ ´ then k “ 4. However, if ε “ ` and k “ 8 or 12 then the only subgroup of G2p2q

with order divisible by kpv ´ kq is G2p2q itself, a contradiction to the requirement that X∆ ă G2p2q.

On the other hand, if k “ 4 then k ă 2n ` 1, which contradicts Lemma 5.1. Therefore X∆ is not a

subgroup of G2p2q. �

Lemma 6.6

Let X “ Sp8p2q and consider the maximal subgroup M “ PSL2p17q. There exists no X-strongly

incidence-transitive code Γ Ď
`Qε
k

˘

with X∆ ďM for ∆ P Γ.

Proof. Since dimpV q “ 8 we have v “ 23p24 ` εq. Assume Γ is X-strongly incidence-transitive

and X∆ ď PSL2p17q. Then kpv ´ kq divides |X∆| and therefore divides |PSL2p17q| also. However,
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Program D.2 shows that there are no values of k such that kpv´kq divides |PSL2p17q| for either value

of ε. Therefore no such Γ exists. �

Lemma 6.7

Let X “ Sp12p2q and consider the maximal subgroup M “ PSL2p25q.22. There exists no X-strongly

incidence-transitive code Γ Ď
`Qε
k

˘

with X∆ ďM for ∆ P Γ.

Proof. Since dimpV q “ 12 we have v “ 25p26 ` εq. Assume Γ is X-strongly incidence-transitive

and X∆ ď PSL2p25q.22. Then kpv´kq divides |X∆| and therefore divides |PSL2p25q.22| also. However,

Program D.2 shows that there are no values of k such that kpv ´ kq divides |PSL2p25q.22| for either

value of ε. Therefore no such Γ exists. �

6.3. Simple classical groups in even characteristic

We begin with an overview of the twisted tensor product modules for the special linear groups. A

more detailed discussion can be found in [56, Section 5.1]. Let G “ SLmpq
f q for some prime power

q “ pr and let W “ W p0q be a FqG-module. For each integer i with 1 ď i ď f ´ 1 we introduce a

FqG-module W piq. As a vector space, W piq is isomorphic to W . The action of G on W piq is defined by

pw, gq ÞÑ wgpq
i
q, for all w PW and g P G,

where gq
i

denotes g with each entry raised to the qith power. By extension, G acts on the tensor

product

V “
f´1
â

i“0

W piq.

Moreover, the action of G on V yields an embedding SLmpq
f q ă SLmf pqq.

Theorem 6.8 ([38], special case of Proposition 5.4.6)

Let T be a simply connected group of Lie type over F2f , and suppose that V is an absolutely irreducible

F2T -module. Let F28 denote the algebraic closure of F2. Then dimpV q “ dimpMqf and one of the

following occurs:

(i) T is untwisted and there exists an irreducible F28T -module M such that

V b F28 –

f´1
â

i“0

M piq

where M piq denotes the natural module for T twisted by a field automorphism.

(ii) T is of type 2Al,
2Dl or 2E6 with an associated graph automorphism τ0 such that V – V τ0 , and

there exists an irreducible F28T -module M such that M –Mτ0 and

V b F28 –

f´1
â

i“0

M piq.
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Lemma 6.9

Let V “ pF2n
2 , Bq be a symplectic space and X “ Sp2np2q. Let Γ Ă

`Qε
k

˘

be an X-strongly incidence-

transitive code with ∆ P Γ and 2 ď |∆| ď 2n´1p2n ` εq ´ 2. Suppose Tmp2
f q is an absolutely

irreducible simple group of Lie type acting on V as a subgroup of X∆. Then |AutpT q| ą 2m
f
´2 and

3` log2pfq ` fm
2 ´mf ą 0.

Proof. By Lemma 6.3 we have 22n´2 ă |AutpT q|. By Theorem 6.8 there exists a module M

such that dimpMqf “ dimpV q “ 2n. By [38, Proposition 5.4.13], dimpMq ě m. Therefore n ě mf {2

and therefore 2m
f
´2 ď 22n´2 ă |AutpT q|. On the other hand, Table 6.1 implies |AutpT q| ď 2fqm

2

,

where q “ 2f . Therefore

2m
f
´2 ă 2fqm

2

. (6.1)

Applying log2 to each side of Inequality (6.1) we have

log2p2
mf´2q “ mf ´ 2 ă log2p2f2fm

2

q “ 1` log2pfq ` fm
2 (6.2)

and therefore

3` log2pfq ` fm
2 ´mf ą 0. (6.3)

�

Lemma 6.10

Let T “ Tmp2
f q be a nonabelian simple classical group with m ě 2 and f ě 3. There are no codes

X-strongly incidence-transitive codes Γ with socpX∆q – T .

Proof. Let bpm, fq “ 3 ` log2pfq ` fm2 ´ mf , viewed as a differentiable function defined for

pm, fq P R2 with m ą 1 and f ą 2. If Γ is strongly incidence-transitive and socpX∆q – T then Lemma

6.9 implies bpm, fq ą 0. Differentiating b, we have

Bb

Bm
“mfp2´mf´2q

Bb

Bf
“m2p1´ lnpmqmf´2q `

1

lnp2qf
.

Since m ě 2 and f ě 3, if Bb
Bm “ 0 then f “ lnp2q

lnpmq ` 2 and in particular, Bb
Bm ă 0. Therefore if

m1 ą m ě 2 and f ě 3 we have bpm1, fq ă bpm, fq. Similarly, if f ě 3 and m ě 2 then m2p1 ´

lnpmqmf´2q ` 1
lnp2qf ď m2p1´m lnpmqq ` 1

3 lnp2q ă 0. Thus if f 1 ě f ą 3 we have bpm, f 1q ă bpm, fq.

Noting that bp4, 3q « ´11.4, bp3, 4q « ´40.0 and bp2, 5q « ´6.69, it follows that the only integral

values of pm, fq which can satisfy Equation (6.5) with m ě 2 and f ě 3 are p2, 3q, p2, 4q and p3, 3q. By

Theorem 2.2, it remains therefore to consider socpX∆q P tPSL2p8q, PSL2p16q, PSL3p8q, PSU3p8qu.

By Lemma 1.15, there exists a factorisation X∆ “ X∆,ϕX∆,ψ with pϕ,ψq P ∆ ˆ ∆. Using the

tables in [35, Chapter 1] to check which of the candidates for socpX∆q is factorisable, we find socpX∆q P

tPSL2p16q,PSU3p8qu. In particular, if T “ PSL2p16q then we have 16384 “ 224
´2 ă |AutpT q| “ 16320,

a contradiction to Lemma 6.9. Similarly, if T “ PSU3p8q then 33554432 “ 233
´2 ă |AutpT q| “ 12096,

a contradiction to Lemma 6.9.
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Therefore there are no X-strongly incidence-transitive codes Γ Ă
`Qε
k

˘

with socpX∆q – Tmp2
f q,

m ě 2 and f ě 3. �

Lemma 6.11 ([38] pg. 199)

Let T be one of PSL˘d pp
f q, PSpdpp

f q1 or PΩεdpp
f q and let K be an algebraically closed field of char-

acteristic p. Suppose that M is a nontrivial irreducible projective KT -module satisfying dimKpMq ď
1
2mpm` 1q, 1

2m
2 or 1

2m
2 ´ 1 in the respective cases. Then either M is quasiequivalent to the natural

projective KT -module of dimension m or M is quasiequivalent to one of the modules in Table 6.3.

Lemma 6.12

Let T “ Tmp4q be a nonabelian simple classical group and V – M bM p1q an absolutely irreducible

F2T -module. If dimpMq ě 1
2mpm´ 1q ´ 2 then Γ is not X-strongly incidence-transitive.

Proof. By Theorem 6.8 there exists a module M such that dimpV q “ 2n “ dimpMq2. Suppose

dimpMq ě 1
2mpm´ 1q´ 2. Then dimpV q ě p1

2mpm´ 1q´ 2q2 “ m4

4 ´ m3

2 ´ 7m2

4 ` 2m` 4 and Lemma

6.3 implies 2
m4

4 ´
m3

2 ´
7m2

4 `2m`2 ă 2m
2
`2. Taking log2 of each side and rearranging we have

m

ˆ

m2

2
`

11m

4
´

3m3

4
´ 2

˙

ą 0 (6.4)

Since m ě 2, Equation (6.4) holds if and only if

m2

2
`

11m

4
´

3m3

4
´ 2 ą 0. (6.5)

Let bpmq “ m2

2 ` 11m
4 ´ 3m3

4 ´ 2. Then db
dm “ 11

4 ` m ´ 9m2

4 “ pm ´ ω`qpm ´ ω´q where ω˘ “
2˘
?

103
9 « 1.35 and ´.091. In particular, if m ě 2 ą ω` then db

dm ă 0. Then for any m ě 2 we have

bpmq ď bp2q “ ´1
2 , contradicting Equation (6.5). �

If q “ 4, Lemma 6.11 and Lemma 6.12 imply it remains only to consider the natural modules T

as well as those modules in Table 6.3. This is currently an open problem.

6.4. Simple classical groups in odd characteristic

Let V “ pF2n
2 , Bq be a symplectic space and X “ Sp2np2q. Let Γ Ă

`Qε
k

˘

be an X-strongly incidence-

transitive code with ∆ P Γ and 3 ď |∆| ď 2n´1p2n` εq´3. Suppose Tmpqq is an absolutely irreducible

simple group of Lie type acting on V as a subgroup of X∆, where q is an odd prime power. This

notation is fixed throughout Section 6.4.

Our main tool in the analysis of the cross characteristic subgroups of Sp2np2q are lower bounds on

the linear degree of a faithful representation of a simple group of Lie type in cross characteristic.

Lemma 6.13 (Special case from [62])

Let T be a nonabelian simple classical group of Lie type in odd characteristic. Then the rank of a
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T M dimpMq

PSL˘pd, qq Λ2W 1
2dpd´ 1q

S2W 1
2dpd` 1q

Λ3W,d “ 6 20
PΩ˝p2d` 1, qq Λ2W 1

2dpd´ 1q
d ě 3, q odd Spin module, d ď 6 2d

Spp2d, qq Section of Λ2W 1
2dpd´ 1q ´ 1 if gcdpm, pq “ 1

1
2dpd´ 1q ´ 2 if p | m

Spin module, d ď 6 2d

Section of Λ3W,m “ 3, q odd 14
T – Spp4, 2q1 3

PΩε2mpqq Section Λ2W 1
2dpd´ 1q, q odd

1
2dpd´ 1q ´ gcdp2,mq, q even

Spin module m ď 7 2m´1

Table 6.2. Projective modules M associated with Lemma 6.11. Note that W denotes
the natural module for T and q “ pf .

T epT q Case Exceptions

PSLmpqq
1
2 pq ´ 1q m “ 2 epPSL2p9qq “ 3
qm´1 ´ 1 m ě 3

PSUmpqq pqm ´ 1q{pq ` 1q m ě 4 even epPSU4p3qq “ 6
qpqm´1 ´ 1q{pq ` 1q m ě 3 odd

PSp2mpqq
1
2 pq

m ´ 1q m ě 2 -

PΩ˝2m`1pqq q2pm´1q ´ 1 m ě 3, q ą 5 epPΩ˝7p3qq “ 27
qm´1pqm´1 ´ 1q m ě 3, q “ 3, 5

PΩ`2mpqq pqm´1 ´ 1qpqm´2 ` 1q m ě 4, q ą 5 -
qm´2pqm´1 ´ 1q m ě 4, q “ 3, 5

PΩ´2mpqq pqm´1 ` 1qpqm´2 ´ 1q m ě 4 -

Table 6.3. Minimal degrees for linear representations of the odd characteristic clas-
sical simple groups in even characteristic. See [38] for full details.

faithful representation of T over a field of even characteristic is at least epT q, where epT q is defined in

Table 6.4.

Lemma 6.14

Let q be an odd prime power and let T “ Tmpqq be a simple classical group over Fq with m ě 3. To

each possible T we associate a function bT pm, qq as defined in Table 6.4. If X∆ is almost-simple with

socle T then bT pm, qq ě 0.
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Case Tmpqq bT pm, qq

(a) PSLmpqq log2pqqm
2 ´ qm´1 ` 4

(b) PSUmpqq log2pqqm
2 ´ 3

4q
m´1 ` 15

4 ` log2 p3q

(c) PSp2mpqq log2 pqq p2m
2 ´m` 1q ´ 1

2q
m ` 5

2

(d) PΩε2mpqq log2pqqp2m
2 ´m` 1q ´ q2m´4 ` log2p5q ` 1

(e) PΩ˝2m`1pqq log2 pqq p2m
2 `m` 1q ´ q2pm´1q ` 3 if q ě 7

log2 pqq p2m
2 `m` 1q ´ q2pm´1q ` qm´1 ` 2 if q “ 3, 5

Table 6.4. bT pm, qq for the classical simple groups with m ě 3 and q an odd prime power.

Proof. By Lemma 6.3 we have log2p|AutpT q|q ´ epT q ` 2 ą 0, where epT q is provided in Table

6.4. We provide bounds |AutpT q| ď cqppmq in Table 6.1 so that

log2pcq
ppmqq ´ epT q ` 2 ą 0. (6.6)

Using Inequality (5.17) as a starting point, we have:

(a) If T “ PSLmpqq with m ě 3 then epT q “ qm´1´1 and |AutpT q| ď 2qm
2

. Inequality (5.17) implies

0 ă log2p2q
m2

q ´ pqm´1 ´ 1q ` 2 “ log2pqqm
2 ´ qm´1 ` 4 “ bpm, qq.

(b) If T “ PSUmpqq with m, q ě 3 then epT q ě qpqm´1 ´ 1q{pq ` 1q ě 3pqm´1 ´ 1q{4 and |AutpT q| ď
2
3q
m2

. Inequality (5.17) implies

0 ă log2

ˆ

2

3
qm

2

˙

´
3

4
pqm´1 ´ 1q ` 2 “ log2pqqm

2 ´
3

4
qm´1 `

15

4
´ log2p3q “ bpm, qq.

(c) If T “ PSp2mpqq with m ě 2 and q ě 3 then epT q “ 1
2 pq

m ´ 1q and |AutpT q| ď q2m2
´m`1.

Inequality (5.17) implies

0 ď log2pq
2m2

´m`1q ´
1

2
pqm ´ 1q ` 2 “ log2pqqp2m

2 ´m` 1q ´
1

2
qm `

5

2
“ bpm, qq.

(d) If T “ PΩε2mpqq with m ě 4 and q ě 3 then epT q ě pqm´1 ` 1qpqm´2 ´ 1q ě q2m´4 and

|AutpT q| ď 10
4 q

2m2
´m`1. Then Inequality (5.17) implies

0 ă log2

ˆ

10

4
q2m2

´m`1

˙

´ q2m´4 ` 2 “ log2pqqp2m
2 ´m` 1q ´ q2m´4 ` log2p5q ` 1 “ bpm, qq.

(e) If T “ PΩ˝2m`1pqq with m ě 3 and q ě 7 then epT q “ q2pm´1q ´ 1 and |AutpT q| ď q2m2
`m`1.

Inequality (5.17) implies

0 ď log2pq
2m2

`m`1q ´ q2pm´1q ` 3 “ log2pqqp2m
2 `m` 1q ´ q2pm´1q ` 3 “ bpm, qq.
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On the other hand if q “ 3 or 5 then Inequality (5.17) implies

0 ď log2pq
2m2

`m`1q ´ qm´1pqm´1 ´ 1q ` 2 “ log2pq
2m2

`m`1q ´ q2m´2 ´ qm´1 ` 2 “ bpm, qq.

Therefore, for each Tmpqq with m ě 3 we have bT pm, qq ě 0. �

Lemma 6.15

Let q be an odd prime power and m ě 3. Then socpX∆q ‰ PSLmpqq.

Proof. Let Γ Ă JpQε, kq be an X-strongly incidence-transitive code. If T “ PSLmpqq with q odd

and m ě 3 then by Lemma 6.14 we must have bpm, qq ě 0, where

bpm, qq “ log2pqqm
2 ´ qm´1 ` 4

Computing the partial derivatives of b we find

Bb

Bm
“ log2pqqp2m´ lnp2qqm´1q

Bb

Bq
“

m2

lnp2qq
` p1´mqqm´2.

For all m, q ě 3 we have

Bb

Bq
ă 0 ô

m2

lnp2qq
` p1´mqqm´2 ă 0 ô

m2

lnp2qq
ă pm´ 1qqm´2

ô
m2

lnp2qpm´ 1q
ă qm´1 ô

ˆ

m2

lnp2qpm´ 1q

˙

1
m´1

ă q.

But m ě 3 so

Bb

Bq
ă 0 ô

ˆ

m2

lnp2qpm´ 1q

˙

1
m´1

ď

d

9

8 lnp2q
« 1.27 ă q.

On the other hand

Bb

Bm
ă 0 ô 2m´ lnp2qqm´1 ă 0 ô

ˆ

2m

lnp2q

˙
1

m´1

ă q,

so Bb
Bm ă 0 for all m, q ě 3. Therefore, for all m ą m1 ě 3 and q ą q1 ě 3 we have bpm1, q1q ą bpm, qq.

In particular, for all m, q ě 3 we have bpm, qq ă bp3, 3q « ´20.1 ă 0. This contradicts Lemma 6.14, so

socpX∆q ‰ PSLmpqq for m, q ě 3 with q an odd prime power. �

Lemma 6.16

Let q be an odd prime power and m ě 3. If socpX∆q – PSUmpqq then pm, qq “ p3, 3q, p3, 5q or p4, 3q.

Proof. Let Γ Ă
`Qε
k

˘

be an X-strongly incidence-transitive code. If T “ PSUmpqq with q odd

and m ě 3 then by Lemma 6.14 must have bpm, qq ě 0, where

bpm, qq “ log2pqqm
2 ´

3

4
qm´1 `

15

4
´ log2p3q.
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Computing the partial derivatives of b we find

Bb

Bm
“ log2pqqp2m´

3

4
lnp2qqm´1q

Bb

Bq
“

m2

lnp2qq
`

3

4
p1´mqqm´2.

Then

Bb

Bq
ă 0 ô

m2

lnp2qq
ă

3

4
pm´ 1qqm´2 ô

4m2

3 lnp2qpm´ 1q
ă qm´1 ô

ˆ

4m2

3 lnp2qpm´ 1q

˙

1
m´1

ă q.

If m ě 4 we have
ˆ

4m2

3 lnp2qpm´ 1q

˙

1
m´1

ď

ˆ

64

9 lnp2q

˙1{3

« 2.2.

and therefore Bb
Bq ă 0 for all m ě 4 and q ě 3.

Similarly,

Bb

Bm
ă 0 ô 2m ă

3

4
lnp2qqm´1 ô

ˆ

8m

3 lnp2q

˙
1

m´1

ă q.

Again, if m ě 4 then
ˆ

8m

3 lnp2q

˙
1

m´1

ď

ˆ

32

3 lnp2q

˙
1
3

« 2.5

so Bb
Bm ă 0 for all m ě 4 and odd prime powers q ě 3.

Therefore, for all m ą m1 ě 4 and q ą q1 ě 3 with pm, qq ‰ p4, 3q we have bpm1, q1q ą bpm, qq. In

particular, we have bp4, 5q « ´54.4 and bp5, 3q « ´19.0, so bpm, qq ă 0 for all m ě 4 and q ě 3 with

pm, qq ‰ p4, 3q. Additionally, if m “ 3 then, since X∆ must admit a factorisation, [35, Corollary 2]

implies q “ 3 or 5. �

Lemma 6.17

Let q be an odd prime power and m ě 3. If socpX∆q – PSp2mpqq then pm, qq “ p3, 3q or p4, 3q.

Proof. If T “ PSp2mpqq and m ě 2 then from Table 6.4 we have

bpm, qq “ log2 pqq p2m
2 ´m` 1q ´

1

2
qm `

5

2
. (6.7)

Computing the partial derivatives of b we find

Bb

Bm
“

1

2
log2pqq p8m´ 2´ lnp2qqmq

Bb

Bq
“

2m2 ´m` 1

lnp2qq
´
mqm´1

2
.

If m, q ě 3 but pm, qq ‰ p3, 3q or p4, 3q then Bb
Bm ă 0. On the other hand we have

Bb

Bq
ă 0 ô

2m2 ´m` 1

lnp2qq
ă
mqm´1

2
ô

2m2 ´m` 1

lnp2qm
ă qm ô

ˆ

2m2 ´m` 1

lnp2qm

˙

1
m

ă q.
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So Bb
Bq ă 0 if and only if

´

2m2
´m`1

lnp2qm

¯
1
m

ă q. In particular, if m ě 3 then q ą
´

18´3`1
lnp2q3

¯
1
3

« 2.0 is

sufficient to ensure Bb
Bq ă 0. In particular, bp3, 5q « ´23.0, bp4, 5q « ´242.7 and bp5, 3q « ´46.1. This

contradicts Lemma 6.14 unless pm, qq “ p3, 3q or p4, 3q. �

Lemma 6.18

Let q be an odd prime power and m ě 4. Then socpX∆q ‰ PΩε2mpqq.

Proof. If T “ PΩε2mpqq and m ě 4 then we have

bpm, qq “ log2pqqp2m
2 ´m` 1q ´ q2m´4 ` log2p5q ` 1. (6.8)

Computing the partial derivatives of b we find

Bb

Bm
“ log2pqq

`

4m´ 1´ 2 lnp2qq2m´4
˘

Bb

Bq
“

2m2 ´m` 1

lnp2qq
` p4´ 2mqq2m´5.

Since m ě 4 and q ě 3, we have

Bb

Bq
ă 0 ô

2m2 ´m` 1

lnp2qp2m´ 4q
ă q2m´4 ô

ˆ

2m2 ´m` 1

lnp2qp2m´ 4q

˙

1
2m´4

ă q.

In particular, since m ě 4 we have

ˆ

2m2 ´m` 1

lnp2qp2m´ 4q

˙

1
2m´4

ď

ˆ

29

4 lnp2q

˙
1
4

« 1.8,

so Bb
Bq ă 0 for all m ě 4 and q ě 3. Similarly, we have

Bb

Bm
ă 0 ô

4m´ 1

2 lnp2q
ă q2m´4 ô

ˆ

4m´ 1

2 lnp2q

˙
1

2m´4

ă q.

In particular, since m ě 4 we have

ˆ

4m´ 1

2 lnp2q

˙
1

2m´4

ď

ˆ

15

2 lnp2q

˙
1
4

« 1.8,

so Bb
Bm ă 0 for all m ě 4 and q ě 3.

Therefore, for all m ě 4 and q ě 3 we have bpm, qq ă bp4, 3q « ´31.7. This contradicts Lemma

6.14, so socpX∆q ‰ PΩε2mpqq for any m ě 4 and odd prime power q ě 3. �

Lemma 6.19

Let m ě 3 and q “ 3 or 5. Then socpX∆q ‰ PΩ˝2m`1pqq.

Proof. If T “ PΩ˝2m`1pqq and m ě 3 then from Table 6.4 we have

bpmq “ log2 pqq p2m
2 `m` 1q ´ q2pm´1q ` qm´1 ` 2, (6.9)
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where q is treated as a parameter. Computing the derivative of b we find

db

dm
“ log2pqq

`

4m` 1´ lnp2qqm´1p2qm´1 ´ 1q
˘

.

Since m, q ě 3 we have

db

dm
ă 0 ô

4m` 1

lnp2q
ă qm´1p2qm´1 ´ 1q. (6.10)

Now, note that

qm´1p2qm´1 ´ 1q ą q2m´2 ô 2qm´1 ´ 1 ą qm´1 ô qm´1 ą 1. (6.11)

Since m, q ě 3 we have qm´1 ą 1 and therefore, combining Inequalities (6.11) and (6.10) we have

4m` 1

lnp2q
ă q2m´2 ñ

db

dm
ă 0. (6.12)

We have
4m` 1

lnp2q
ă q2m´2 ô

ˆ

4m` 1

lnp2q

˙
1

2m´2

ă q.

In particular, since m ě 3 and q “ 3 or 5, we have

ˆ

4m` 1

lnp2q

˙
1

2m´2

ď

ˆ

13

lnp2q

˙
1
4

ă 2.1 ă q.

Therefore db
dm ă 0 for m, q ě 3. Therefore, for all m ě 3 we have bpmq ď bp3q « ´31.7 and ´554.3, for

q “ 3 and 5 respectively. This contradicts Lemma 6.14, so socpX∆q ‰ PΩ˝2m`1p3q or PΩ˝2m`1p5q for

any m ě 3. �

Lemma 6.20

Let q ě 7 be an odd prime power and let m ě 3. Then socpX∆q ‰ PΩ˝2m`1pqq.

Proof. If T “ PΩ˝2m`1pqq and m ě 3 then from Table 6.4 we have

bpm, qq “ log2 pqq p2m
2 `m` 1q ´ q2pm´1q ` 3. (6.13)

Computing the partial derivatives of b we find

Bb

Bm
“ log2pqq

`

4m` 1´ 2 lnp2qq2m´4
˘

Bb

Bq
“

2m2 `m` 1

lnp2qq
´ p2m´ 2qq2m´3.

For m ě 3 and q ě 7 we have

Bb

Bq
ă 0 ô

2m2 `m` 1

lnp2qq
ă p2m´ 2qq2m´3 ô

ˆ

2m2 `m` 1

lnp2qp2m´ 2q

˙

1
2m´2

ă q.

Since m ě 3, we have
ˆ

2m2 `m` 1

lnp2qp2m´ 2q

˙

1
2m´2

ď

ˆ

22

4 lnp2q

˙
1
4

« 1.7,
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so Bb
Bq ă 0 for all q ě 7. Similarly, we have

Bb

Bm
ă 0 ô 4m` 1 ă 2 lnp2qq2m´4 ô

ˆ

4m` 1

2 lnp2q

˙
1

2m´4

ă q.

Since m ě 3, we have
ˆ

4m` 1

2 lnp2q

˙
1

2m´4

ď

ˆ

13

2 lnp2q

˙
1
4

« 1.7,

so Bb
Bm ă 0 for all q ě 7. Therefore, for all m ě 3 and odd prime powers q ě 7, we have bpm, qq ď

bp3, 7q « ´2336. This contradicts Lemma 6.14, so socpX∆q ‰ PΩ˝2m`1pqq for any m ě 3 and q ě 7. �

Lemma 6.21

Let q be an odd prime power with q ą 50. Then socpX∆q ‰ PSL2pqq.

Proof. Suppose Γ is X-strongly incidence-transitive. If T “ PSLp2, qq we have |AutpT q| “

qfpq2 ´ 1q ď q4 and from Table 6.4, epT q “ 1
2 pq ´ 1q. Applying Lemma 6.3 we have q4 ě |AutpT q| ą

2n´2 ě 2epT q´2. Therefore

4 log2pqq ą epT q ´ 2 “
1

2
pq ´ 1q. (6.14)

Let bpqq “ 4 log2pqq ´
1
2q `

5
2 . Then Inequality (6.14) implies bpqq ą 0. The derivative of bpqq is

db

dm
“

1

lnp2qq
´

1

2

and therefore q ě 3 implies bpqq is decreasing. In particular, if q ą 50 then we have bpqq ă bp51q «

´0.31. Therefore socpX∆q ‰ PSL2pqq for odd prime powers q ą 50. �

It seems reasonable to suspect that the nonexistence of Jordan-Steiner type codes with socpX∆q “

PSL2pqq with q ď 50 can be checked computationally. This is currently an open problem. Note that

the factorisations of PSL2pqq enumerated in [35] may provide hints towards a solution.

6.5. Some loose ends in the odd characteristic case

Several cases remain open; it is currently unknown whether there exists X-strongly incidence-transitive

codes of Jordan-Steiner type with socpX∆q equal to one of PSU3p3q, PSU3p5q, PSU4p3q, PSp4pqq,

PSp6p3q, PSU8p3q, or with socpX∆q “ PSL2pqq with q ă 50.

We use GAP [59] to eliminate some of the open cases from Section 6.4. Let X “ Sp2np2q and let

Γ Ă
`Qε
k

˘

be an X-strongly incidence-transitive code. We denote the natural module of X by V – F2n
2 .

Let ∆ P Γ and suppose X∆ is almost simple with T “ socpX∆q. Our treatment is similar in each case.

A rough outline is as follows:

(a) Use Program D.1 to compute the largest value of n such that |AutpT q| ě 2n´1p2n ´ 1q.

(b) Use the Atlas of Brauer Characters [63] or GAP [59] to find the absolutely irreducible 2-modular

representations of symplectic, but not orthogonal type with dimension compatible with part (a).

(c) Use Program D.2 to compute the values of k P r2 : v{2s such that kpv ´ kq divides |X∆|.
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Example 6.22

We analyse the case X∆ “ PSU3p3q. By [38, Table 5.3.A], the minimum degree of an absolutely

irreducible F2T -module is 6. Moreover, |X∆| is divisible by |∆| ě 2n´2p2n ´ 1q, so |AutpT q| ě

2n´2p2n ´ 1q. This implies the dimension of V is at most 14. By [63], the only absolutely irreducible

representation of PSU3p3q in characteristic two which preserves a symplectic form, but is fixed point

free on Qε, occurs in dimension 6. However Lemma 6.5 shows that there are no X-strongly incidence-

transitive codes associated with the maximal subgroup G2p2q – PSU3p3q of Sp6p2q.

Example 6.23

We analyse the case socpX∆q “ PSU3p5q. Since |X∆| is divisible by |∆| ě 2n´2p2n´1q, so |AutpT q| ě

2n´2p2n ´ 1q. This implies the dimension of V is at most 20. By [63], the only absolutely irreducible

representation of U3p5q in characteristic two which preserves a symplectic form, but is fixed point free

on Qε, occurs in dimension 20. However, Program D.2 shows that there are no values of k such that

kpv ´ kq divides |AutpT q|. Therefore no X-strongly incidence-transitive codes arise in this case.

Example 6.24

We analyse T “ PSp6p3q. We must have |AutpT q| ě 2n´1p2n ´ 1q, so Program D.1 implies dimpV q ď

34. The 2-modular character table of T is available in GAP [59]. There are no 2-modular representa-

tions of T of even dimension at most 34. Therefore no codes of interest arise in this case.

6.6. Sporadic simple groups

Suppose Γ Ă
`Qε
k

˘

is X-strongly incidence-transitive and for ∆ P Γ, socpX∆q is a sporadic simple

group. The factorisations of the sporadic simple groups and their automorphisms are enumerated in

[36]. We use this information to show such a code does not exist. The majority Section 6.6 follows

from GAP calculations. The relevant code is available from [64].

Theorem 6.25

Let X “ Sp2np2q and let Γ Ă
`Qε
k

˘

be an X-strongly incidence-transitive code. Let ∆ be a codeword

of Γ. Then socpX∆q is not a sporadic simple group.

Proof. The factorisations of the sporadic simple groups and their automorphism groups are

enumerated in [36, Tables 1,2,3]. We begin by considering five factorisations G “ AB where B is not

known explicitly. Suppose G “ X∆, A “ X∆,ϕ and B “ X∆,ψ for pϕ,ψq P ∆ ˆ∆. If G “ AB with

B ď C, write κ “ |C : B|. Recall from Lemma 6.2 that νop|G : A|`|G : B|q “ νep|G : A|`|G : B|q˘1,

where νe and νo denote the even and odd parts of a given integer.

(a) Suppose G “ Co1, A “ Co3 and G2p4q.2 ď B ď pA4 ˆ G2p4qq.2. We know |G2p4q.2| divides |B|,

which in turn divides pA4 ˆG2p4qq.2, therefore |B : G2p4q.2| divides 12. For each divisor, a GAP

[59] computation yields a contradiction to Lemma 6.2.
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(b) Suppose G “ Co1, A “ Co2 and G2p4q ď B ď pA4 ˆ G2p4qq.2. We have |G : A| ` |G : B| “

23p12285 ` 23 ¨ 10758825κq, but 12285 ` 23 ¨ 10758825κ ą 23 ˘ 1 for all κ P Z`. This contradicts

Lemma 6.2.

(c) Suppose G “ AutpHSq, A “M22.2 and B ď 51`2
` r25s. We have |G : A|`|G : B| “ 22p25`5544κq,

but 25` 5544κ ą 22 ˘ 1 for all κ P Z`. This contradicts Lemma 6.2.

(d) Suppose G “ AutpHeq, A “ Sp4p4q.4 and B ď 71`2
` ¸pS3ˆC6q. Here we have |G : A| ` |G : B| “

2p1029` 28 ¨ 1275κq, but 1029` 28 ¨ 1275κ ą 2˘ 1 for all κ P Z`. This contradicts Lemma 6.2.

(e) Suppose G “ AutpJ2q, A “ PSU3p3q.2 and B ď 52 ¸ pC4 ˆ S3q. We have |G : A| ` |G : B| “

22p25` 23 ¨ 63κq, but 25` 23 ¨ 63κ ą 22 ˘ 1 for all κ P Z`. This contradicts Lemma 6.2.

Therefore none of the factorisations in cases (a)-(e) above are associated with a Jordan-Steiner action.

For the remaining factorisations of the sporadic simple groups and their automorphism groups, both

factors are known explicitly. These are eliminated with GAP [59] (see [64]). Therefore socpX∆q is not

a sporadic simple group. �





CHAPTER 7

Affine type strongly incidence-transitive codes over F2

7.1. Introduction

Let V be an n-dimensional vector space over Fq. For each w P V, denote by tw the translation defined by

vtw “ v`w for all v P V. Denote by T the group of all translations of V, and by AΓLnpqq “ T¸ΓLnpqq

the group of all affine semilinear transformations of V. By an X-strongly incidence-transitive code of

affine type, we mean an X-strongly incidence-transitive code Γ Ă JpV, kq, where T Ÿ X ď AΓLnpqq

and X acts 2-transitively on V. We assume throughout that n ě 3 and 2 ď k ď n ´ 2. The articles

[1, Section 6] and [28] together provide a classification of affine-type X-strongly incidence-transitive

codes, provided that q ‰ 2. For the remainder of the Chapter we set q “ 2 and investigate some of

the possibilities.

Definition 7.1

Let Γ be an X-strongly incidence-transitive code of affine type. We define MΓ “ tT XX∆ | ∆ P Γu,

and for each M PMΓ we define ΓM Ď Γ by ΓM “ t∆ P Γ | T XX∆ “ Mu. We refer to the elements

of P “ tΓM Ď Γ |M PMΓu as the components of Γ. We call Γ an X-single-component code if for all

∆1,∆2 P Γ we have T XX∆1
“ T XX∆2

. We call Γ an X-translation-free code if T XX∆ is the trivial

group for all ∆ P Γ.

When there is little ambiguity, we write M “ MΓ and P “ PΓ. In Section 7.2 we construct a

projection from a single-component code onto a translation-free code. In Section 7.3 we classify the

translation-free codes and provide one possible method for lifting a translation-free code to a single-

component code. The classification of all affine-type strongly incidence-transitive codes with q “ 2

remains an open problem.

We fix the following notation throughout Chapter 7: V “ Fn2 and V# “ Vzt0u, X is a subgroup

of AGLnp2q which contains the translation group T and acts 2-transitively on V, and Γ Ă
`V
k

˘

is an

X-strongly incidence-transitive code. Note that for all ∆ P Γ, T∆ “ X∆ X T is a normal subgroup of

X∆ and TX∆{T – X∆{T∆ is isomorphic to a subgroup of GLnp2q.

Lemma 7.2

Let Γ Ă
`V
k

˘

be an X-strongly incidence-transitive code of affine-type.

(a) The set of components P “ tΓM |M PMu is a system of imprimitivity preserved by X, and the

action of X on the parts of P is equivalent to the transitive action of X on M.

(b) For each M PM, ΓM is an NXpMq-strongly incidence-transitive code in JpV, kq.

93
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(c) We have NXpMq “ T ¸NX0
pMq, |M| “ |X : NXpMq| “ |X0 : NX0

pMq|, and |ΓM | “ |NXpMq :

X∆|.

Proof. (a) Clearly Γ is a disjoint union YMPMΓM . For x P X and ∆ P ΓM , the codeword

∆1 :“ ∆x is such that T∆1 “ T XX∆1 “ T XXx
∆ “ T x∆. Therefore for each M PM we have

pΓM q
x “ t∆x P Γ | T∆ “Mu “ t∆ P Γ | T∆x´1 “Mu

“ t∆ P Γ | pT∆q
x´1

“Mu “ t∆ P Γ | T∆ “Mxu “ ΓMx .

Therefore pΓM q
x P P and the action of X on the parts of P is equivalent to the transitive action

of X on M.

(b) Let M P M. Part (a) implies ΓM is a block of imprimitivity in the transitive action of X on Γ,

and the stabiliser of ΓM is NXpMq. Since, for a transitive action, the setwise stabiliser of a block

acts transitively on the points of the block, we have that NXpMq is transitive on ΓM . If ∆ P ΓM ,

then X∆ ď NXpMq ď X so X∆ is also the stabiliser of ∆ in the action of NXpMq on ΓM . Since

X∆ is transitive on ∆ˆ∆, it follows that ΓM is an NXpMq-strongly incidence-transitive code.

(c) The translation group T centralises M , so T ď NXpMq, and hence NXpMq “ T ¸NX0pMq. Note

also that T acts trivially on M, so |M| “ |X : NXpMq| “ |X0 : NX0pMq|. Finally |ΓM | “

|Γ|{|M| “ |NXpMq : X∆|.

�

7.2. Single-component strongly incidence-transitive codes

In Section 7.2 we show that every single-component strongly incidence-transitive code of affine type

can be projected onto a translation-free strongly incidence-transitive code which is also of affine type.

Lemma 7.3

If Γ “ ΓM Ă
`V
k

˘

is an X-single-component code then M is a normal subgroup of X and the set

of M -orbits in V is a system of imprimitivity preserved by X. Moreover, the M -orbits in V are the

translations of the subspace U “ tm P V | tm PMu.

Proof. First, Lemma 7.2 implies Γ “ ΓM if and only if |M| “ |X : NXpMq| “ 1 if and only if

NXpMq “ X if and only if M Ÿ X. By Definition 7.1, M leaves each ∆ P Γ invariant. Since each

codeword is a proper subset of V, M ‰ T and M is an intransitive normal subgroup of X. Therefore

the set of M -orbits in V is a system of imprimitivity preserved by the action of X. For all v P V we

have vM “ tv `m | tm P Mu “ v ` tm | tm P Mu “ v ` U . Finally, u, v P U if and only if tu, tv P M

if and only if tu`v P M if and only if u ` v P U , that is, U is a subspace of V and the M -orbits are

translates of U . �

Of course, if M is the trivial group then the system of imprimitivity constructed in Lemma 7.3 is

also trivial.
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Construction 7.4 ([1], Example 4.4)

Input: A set V of v points, a partition U of V into b parts, each of size a with a, b ą 1, and a code Γ

in Jpb, k0q with point set U .

Output: A code pΓ in Jpv, kq with v “ ab and k “ bk0.

Description: For each ∆ P Γ define p∆ P
`V
k

˘

by p∆ :“
Ť

UP∆ U where with k “ k0b. Return
pΓ :“ tp∆ | ∆ P Γu.

Lemma 7.5 ([1], Lemma 7.6)

Let Γ Ď
`U
k0

˘

and let pΓ denote the code obtained by applying Construction 7.4 to Γ. Let A “

AutpΓq X SympUq. Then AutppΓq contains Sa oA and δppΓq “ aδpΓq. Further, we have the following:

(a) If Γ is A-strongly incidence-transitive then pΓ is pSa o Aq-strongly incidence-transitive, and either

Γ “
`U
k0

˘

or δpΓq ě 2.

(b) If Sa oA is neighbour-transitive on pΓ then either Γ is A-strongly incidence-transitive, or a “ 2 and

δpΓq “ 1.

Lemma 7.6

Suppose Γ “ ΓM Ă
`V
k

˘

is an X-single-component code and M is nontrivial and ∆ P Γ. Then either ∆

or ∆ is an affine flat, or Γ arises as the output of Construction 7.4 applied to a code in Jpv{|M |, k{|M |q.

Proof. Let U denote the set of M -orbits in V and let a “ 2` and b “ 2n´`. By Lemma 7.3, U is a

system of imprimitivity preserved by X, and therefore Lemma 1.21 implies that each ∆ P Γ is a union

blocks of imprimitivity in U . In particular, [1, Proposition 4.7] implies that Γ arises from [1, Examples

4.1 or 4.4]. The only code from [1, Example 4.1] for which codewords are unions of M-orbits come

from Line 1 of [1, Table 3] where ∆ (or ∆) is an M -orbit, and hence codewords (or their complements)

are `-flats. The codes from [1, Example 4.4] all arise from Construction 7.4, where the input code is

in JpU , k{2`q. �

We provide some further details in the case that ∆ is an affine flat in Appendix C.3. For the

remainder of Chapter 7 we focus our attention on codes which arise as the output of Construction 7.4.

Definition 7.7

Let ∆ Ă V and let L be a `-flat in AGnp2q. We call L a ∆-shared `-flat if L X ∆ and L X ∆ are

nonempty. If v P V# then we use xvyT to denote the parallel class of affine 1-flats which contains the

1-dimensional subspace of V spanned by v.

Lemma 7.8

Let V “ Fn2 and let Γ “ ΓM Ă
`V
k

˘

be an X-single-component code. Let ∆ P Γ and U “ tm P V | tm P
Mu. Then:

(a) v P U# if and only if the parallel class xvyT contains no ∆-shared 1-flats, and

(b) X∆ acts transitively on the set D “ txvyT | v P VzUu.
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Proof. By Lemma 7.2, NXpMq “ T ¸ Y0, where Y0 “ NX0
pMq. Recall that X∆ ď NXpMq.

(a) Suppose v P U#. Then tv P M “ T∆, and for all u P ∆ we have utv “ u ` v P ∆. In other

words, if u P ∆ then tu, u ` vu Ď ∆, so xvyT contains no ∆-shared 1-flats. Conversely, suppose

that xvyT contains no shared 1-flats. Then for all u P ∆, xvytu “ tu, v ` uu is contained in ∆, so

utv “ u` v P ∆ for all u P ∆, and hence tv P T∆. Therefore v P U#.

(b) Let xuyT , xvyT be two members of D. By part (a), each contains a ∆-shared 1-flat, so there exists

a, c P ∆ and b, d P ∆ such that ta, bu, tc, du are ∆-shared 1-flats in xuyT , xvyT , respectively. Since

ΓM is NXpMq-strongly incidence-transitive, by Lemma 7.2, there exists x P NXpMq such that

pa, bqx “ pc, dq, and hence pxuyT qx “ xvyT .

�

Theorem 7.9

Let Γ “ ΓM Ă
`V
k

˘

be an X-single-component code with |M | “ 2` ‰ 1 and let U denote the set of

M -orbits in V. For each ∆ P Γ, define q∆ P
` U
k{|M |

˘

to be the set of M -orbits contained in ∆, and define

qΓ :“ tq∆ | ∆ P Γu. Let U “ tm P V | tm PMu. The following hold:

(a) qΓ is an NXpMq{M -strongly incidence-transitive code in JpV{U, k{2`q.
(b) Let Z “ xT,X∆y “ T ¸ Z0. Then Z0 is transitive on the sets D “ txvyT | v P VzUu and VzU .

(c) NXpMq{M – pT {Mq¸NX0
pMq is a 2-transitive subgroup of AGLpV{Uq, and qΓ is translation-free.

Proof. First, note that if ∆ P Γ then Lemma 7.3 implies that q∆ is well defined. Then we have:

(a) By definition, M fixes each element of U , so the quotient group NXpMq{M acts on qΓ. Moreover,

NXpMq is transitive on ΓM and therefore NXpMq{M acts transitively on qΓ. Let q∆ P qΓ, and let

∆ :“ YU`vP q∆pU ` vq, so ∆ P ΓM . Now, X∆ ď NXpMq and X∆ is transitive on ∆ ˆ ∆, so it

follows that X∆ induces a transitive action on q∆ˆ pUzq∆q. This proves part (a).

(b) Let Z “ xT,X∆y “ T ¸ Z0 and note Z0 ď NX0
pMq. Since T acts trivially on D, it follows that

Z “ xT,X∆y acts transitively on D with T in the kernel of the action. Then, since Z “ T ¸ Z0 “

TX∆, the groups Z0 and X∆ induce the same group of permutations on D, though M lies in the

kernel of the second action. In particular, Lemma 7.8 implies Z0 is transitive on D. Then since

Z0 fixes 0, we must have that Z0 is transitive on VzU .

(c) The structure of NXpMq{M follows from the equation NXpMq “ T ¸ NX0
pMq. The group

NXpMq{M acts on V{U as a group of affine type containing the translation group T {M . The

stabiliser of the zero vector in this action is isomorphic to NX0
pMq acting on the quotient space

V{U . Since NX0
pMq contains Z0, and since Z0 is transitive on VzU , it follows that both Z0 and

NX0
pMq induce transitive actions on pV{Uq#. Thus NXpMq{M is a 2-transitive group of affine

type on V{U . Finally, since T∆ “M , for ∆ P ΓM , it follows that X∆ is the stabiliser in NXpMq of

the corresponding codeword q∆ P qΓ, and that in NXpMq{M we have pX∆{MqX pT {Mq “M{M “

1. Thus qΓ is translation-free.

�
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7.3. Translation-free strongly incidence-transitive codes

Let V “ Fn2 and let Γ Ă
`V
k

˘

be an X-strongly incidence-transitive code of affine type. Recall from

Definition 7.1 that Γ is called translation-free if T∆ “ t1u for all ∆ P Γ. In Section 7.3 we classify the

translation-free codes in JpV, kq. We begin by stating a special case of Lemma 7.8.

Corollary 7.10

Let Γ Ă
`V
k

˘

be an X-translation-free code with ∆ P Γ. Then:

(a) every parallel class of 1-flats in AGnp2q contains a ∆-shared 1-flat, and

(b) X∆ acts transitively on the set of all parallel classes of 1-flats in AGnp2q.

Recall that a 2-pv, k, λq design is called symmetric if the number of points is equal to the number

of blocks. Below we describe some families of symmetric 2-pv, k, λq designs which are used in Lemma

7.13.

Example 7.11

Let V “ F2n
2 with n ě 2 and equip V with a symplectic form B. Consider the set Q of all quadratic

forms on V which polarise to B. Associate with each pair pϕ, εq P Qˆ t˘u the set ∆εpϕq Ă V defined

by

∆εpϕq “

$

&

%

singpϕq if ϕ P Qε

Vz singpϕq if ϕ P Q´ε
.

For each ε P t˘u we define a code SεpVq “ t∆εpϕq | ϕ P QpV qu in Jp22n, 2n´1p2n`εqq. The codewords

of SεpVq are precisely the blocks of the 2-transitive symmetric 2-designs with full automorphism group

X “ ASp2np2q which were described by Kantor in [50].

William Kantor classified the symmetric 2-transitive 2-pv, k, λq designs. His classification is used

in our classification of translation-free strongly incidence-transitive codes, so we recall the result below.

Theorem 7.12 ([65])

Let D be a symmetric 2-pv, k, λq design with v ě 2k and suppose AutpDq acts 2-transitively on points.

Then D is one of:

(i) a projective space with full automorphism group PΓLnpqq for some n ě 3, v “ qn´1
q´1 and k “

qn´1
´1

q´1 ;

(ii) the unique Hadamard 2-p11, 5, 2q design Hp11q with full automorphism group X “ PSL2p11q and

block stabiliser X∆ “ A5;

(iii) Higman’s 2-p176, 50, 14q design D176 with full automorphism group X “ HS and block stabiliser

X∆ “ PSU3p5q ¸ C2; or

(iv) the 2-designs S`pV q described in Example 7.11, with full automorphism group ASp2mp2q.
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Theorem 7.13

Let Γ be an X-translation-free code and let ∆ P Γ. Define Y “ T ¸X∆ and define a code Γ1 Ď JpV, kq
by Γ1 “ ∆Y . Then Γ1 Ď Γ and the codewords of Γ1 are the blocks of a point 2-transitive symmetric

2-design with point set V. In particular, Γ1 is the block set of one of the designs S`pVq and S´pVq
defined in Example 7.11. Conversely, if X “ ASp2np2q then for each ε P t˘u, Γ “ SεpVq is an

X-strongly incidence-transitive code in Jpv, kq, where v “ 22n and k “ 2n´1p2n ` εq.

Proof. Let Y “ TX∆ and Γ1 “ ∆Y . Then Y “ T ¸ Y0, where Y0 is the stabiliser of the zero

vector in Y . Since Γ is translation-free, T XX∆ “ t1u and therefore

Y0 – Y {T – TX∆{T – X∆{pX∆ X T q – X∆.

By Corollary 7.10, X∆ is transitive on the set of parallel classes of 1-flats in V. It follows that Y and

Y0 are transitive on the set of parallel classes of 1-flats in V, and in particular Y0 is transitive on Vzt0u.
Therefore Y is 2-transitive on V and Γ1 “ ∆Y is the block set of a 2-design with point set V. Moreover,

|Γ1| “ |Y : Y∆| “ |Y : X∆| (since Y∆ “ X∆)

“
|Y0||T |

|X∆|
“ |T | (since Y0 – X∆).

Therefore Γ1 is the block set of a 2-transitive symmetric 2-design with point set V. The point 2-

transitive symmetric 2-designs were classified by Kantor [65] (see Theorem 7.12). In particular, Γ1

is the block set of S`pVq or S´pVq. It remains to prove that these designs yield strongly incidence-

transitive codes.

By Lemma 1.20, SεpVq is X-strongly incidence-transitive if and only if

(i) X is transitive on V;

(ii) there exists u P V such that Xu acts transitively on the set Γu of blocks containing u; and

(iii) there exists ∆ P Γ with u P ∆ such that Xu,∆ acts transitively on ∆.

We know X “ ASp2np2q acts transitively on V since the group of translations is transitive on V.

Therefore property (i) holds. Next we choose u “ 0 and consider the set Γ0 of codewords in Γ that

contain 0. Since ϕp0q “ 0 for all ϕ P Q, it follows that Γ0 “ t∆
εpϕq | ϕ P Qεu. For any ψ,ψ1 P Qε,

Theorem 3.1 implies there exists g P X0 such that ψ1 “ ψg. Therefore

∆εpψqg “ txg P V | ψpxq “ 0u

“ ty P V | ψpyg´1q “ 0u

“ ty P V | ψgpyq “ 0u

“ ∆εpψ1q.

Therefore X0 acts transitively on Γ0 and property (ii) holds. Finally, for any codeword ∆ “ ∆εpϕq

containing 0 we have ∆ “ tv P V | ϕpvq “ 1u so Theorem 2.28 implies that X0,∆ acts transitively

on ∆. Therefore Γ “ SεpVq is an X-strongly incidence-transitive code in JpV, 2n´1p2n ` εqq for each

ε P t˘u the code. �
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We provide below a construction which lifts a translation-free code on a space of dimension r to

a single-component code on a space of dimension r ` s, where s is an arbitrary positive integer.

Lemma 7.14

Let Γ be a Y -translation-free code in JpU , kq where |U | “ 2r, Y “ T ¸ Y0 ď AGLpUq, s P Z` and

V “ Fs2 ˆ U . Write the vectors in V as ordered pairs pu, vq with u P Fs2, v P U . For each ∆ P Γ define
p∆ “ Fs2 ˆ∆ P

` V
2sk

˘

, and let pΓ “ tp∆ | ∆ P Γu. Let X “ T ¸X0, where T is the translation group on

V and

X0 “

#˜

A 0

B C

¸

| A P GLsp2q, B P Frˆs2 , C P Y0

+

.

Then pΓ is an X-single-component code in JpV, 2skq, and for each p∆ P pΓ we have T
p∆ “ ttpu,0q P T |

u P Fs2u.

Proof. We begin by demonstrating that X is an automorphism group of pΓ. Let ∆ P Γ and

let x0 P X0 so that pu, vqx0 “ puA ` vB, vCq for all pu, vq P V. Then for all ∆ P Γ we have
p∆x0 “ pFs2 ˆ ∆qx0 “ Fs2 ˆ ∆C “ y∆C . But C P AutpΓq so ∆C P Γ and therefore y∆C P pΓ. Therefore

x0 P AutppΓq. Also, the translation tpu1,v1q P T maps pu, vq to pu`u1, v`v1q and hence maps p∆ to p∆tp0,v1q ,

and since tp0,v1q P T ď Y , we have tpu1,v1q P AutppΓq. Thus X ď AutppΓq. Moreover, Y acts transitively

on Γ and therefore X is transitive on pΓ. Let p∆ P Γ. The computation above shows that T
p∆ consists of

all tpu1,v1q such that ∆tp0,v1q “ ∆. Since Γ is translation-free, it follows that T
p∆ “ ttpu,0q P T | u P F

s
2u.

We claim that X
p∆ is transitive on p∆ ˆ p∆. To prove this, let ai :“ pui, viq P p∆ and bi “ pwi, ziq P p∆,

for i “ 1, 2. We need to find x P X such that pa1, b1q
x “ pa2, b2q. Now, pv1, z1q, pv2, z2q P ∆ ˆ ∆,

and since Γ is Y -strongly incidence-transitive, there exists C P Y such that pv1, z1q
C “ pv2, z2q, and

hence

˜

I 0

0 C

¸

P X0 maps a1 to pu1, v2q and b1 to pw1, z2q. Thus it is sufficient to prove the claim in

the case where v1 “ v2 “ v P ∆ and z1 “ z2 “ z P ∆. Note that v ‰ z, since these lie in different

subsets of U . Next we argue that it is sufficient to prove the claim in the case where both v, z are

nonzero. Indeed, if one of v, z is zero then, since 2 ď k ă |U |, we have |U | “ 2r ě 4. Hence there

exists a translation t of U such that vt, zt are both non-zero. Therefore, if the claim holds when u

and z are both non-zero, then there exists x P X
p∆t such that pat1, b

t
1q
x “ pat2, b

t
2q, and since t´1 “ t,

txt P X∆. Moreover, pa1, b1q
txt “ pa2, b2q. Thus we may assume that both v, z are non-zero. Since

we work over the field F2, this means that v, z are linearly independent vectors in U “ Fr2. We shall

prove that some matrix x0 P X0 of the form

˜

I 0

B I

¸

maps pa1, b1q to pa2, b2q. We see x0 maps

a1 “ pu1, vq to pu1 ` vB, vq and b1 to pw1 ` zB, zq. Hence x0 maps pa1, b1q to pa2, b2q if and only if

u1 ` vB “ u2 and w1 ` zB “ w2, or equivalently, vB “ u1 ` u2 and zB “ w1 ` w2. Clearly such a

matrix exists, since B represents a linear map Fr2 Ñ Fs2 and the images of two linearly independent

vectors of Fr2 may be chosen arbitrarily and independently. This proves the claim. Therefore pΓ is

X-strongly incidence-transitive and T
p∆ “ ttpu,0q P T | u P F

s
2u. �

It is currently unknown whether there are alternative methods of lifting translation-free codes to

single-component codes.





CHAPTER 8

Conclusion

This thesis is a contribution towards the classification of strongly incidence-transitive codes. Recall

that a code in JpV, kq is a vertex subset Γ Ă
`V
k

˘

. The code Γ is called X-strongly incidence-transitive

for X ď AutpΓq if X acts transitively on Γ, and for each ∆ P Γ, X∆ acts transitively on ∆ˆ∆. The

majority of our work focuses on the following problem, which was originally posed by Bob Liebler and

Cheryl Praeger.

Problem 8.1 ([1])

For ε P t˘u, let V “ Qε denote the set of all ε-type quadratic forms on the vector space V “ F2n
2

which polarise to a particular symplectic form B. Let X “ Sp2np2q be the isometry group of B, and

consider the 2-transitive action of X on Qε defined by ϕgpxq “ ϕpxg´1q for all ϕ P Qε, g P X, and

x P V . Classify the X-strongly incidence-transitive codes Γ Ă
`Qε
k

˘

with 2 ď k ď |Qε| ´ 2.

We have had success in attacking Problem 8.1 using a combination of methods from permutation

group theory, representation theory and combinatorics. Aschbacher’s Theorem [37] on the maximal

subgroups of a classical group forms the backbone of our divide and conquer style analysis.

Theorem 8.2

Suppose Γ is one of the codes described in Problem 8.1 and let ∆ P Γ. Further, suppose that X∆ lies

in one or more of the geometric Aschbacher classes C1´ C8. Then there exists a subspace U ă V fixed

setwise by X∆, and one of the following holds:

(a) U is nondegenerate with 2 ď dimpUq ď 2pn ´ 1q and for ε1 P t`,´u, ∆ consists of all quadratic

forms ϕ P Qε such that ϕ|U is type ε1, ϕ|UK is type εε1. Moreover, X∆ – SppUq ‘ SppUKq; or

(b) U is totally isotropic with either ε “ ` and 1 ď dimpUq ď n, or ε “ ´ and 1 ď dimpUq ď n´ 1,

and ∆ consists either of the set of quadratic forms ϕ P Qε such that U is ϕ-singular or the set of

quadratic forms ϕ P Qε such that the set of ϕ-singular vectors in V intersects U in a hyperplane.

Moreover, X∆ – 2dpd`1q{2.2dp2n´dq ¸ pGLpUq ˆ SppUK{Uqq.

Conversely, for each ∆ described above, Γ “ ∆X is an X-strongly incidence-transitive code in JpQε, kq

with full automorphism group Sp2np2q.

The proof of Theorem 8.2 uses the geometric structures in V associated with each of Aschbacher

classes C1-C8. The maximal subgroups of Sp2np2q which do not lie in any of the geometric Aschbacher

classes must lie in C9. For X “ Sp2np2q we have X∆ P C9 if and only if there exists a nonabelian simple
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group T with T Ĳ X∆ ď AutpT q and the action of X∆ on V is absolutely irreducible. We construct

in total only two examples of X-strongly incidence-transitive codes with X∆ P C9, both of which are

constructing by considering the action of S10 on its 8-dimensional fully deleted permutation module.

On the other hand, we use the Classification of the Finite Simple Groups to show that several possible

families of X-strongly incidence-transitive codes with X∆ P C9 do not yield any examples, though we

are left with several open cases.

Theorem 8.3

Suppose Γ is one of the codes described in Problem 8.1 and let ∆ P Γ. Suppose further that G

is a symmetric or alternating group on m letters, V is the fully deleted permutation module for G

and X∆ ď G. Then V “ F8
2, X∆ “ S10 and Γ corresponds to the code in Jp136, 10q constructed

in Section 5.4, or its complement in Jp136, 126q. Conversely, each of the codes above is X-strongly

incidence-transitive.

The codes in the Theorem 8.3 are block sets for 2-p136, 10, 64q and 2-p136, 126, 11200q designs.

Theorem 8.4

Suppose Γ is one of the codes described in Problem 8.1 and let ∆ P Γ. Suppose further that T Ĳ X∆ ď

AutpT q for a simple nonabelian classical group T “ Tmpqq. Then one of the following holds:

(a) q “ 2,

(b) q “ 4 and dimpV q ď 1
2mpm` 1q (see Theorem 6.12 and Table 6.3 for a list of specific cases), or

(c) q is odd and one of the following holds

(i) socpX∆q “ PSU4p3q,PSp4pqq or PSU8p3q; or

(ii) socpX∆q “ PSL2pqq with q ă 50.

None of the cases in Theorem 8.4 are known to give rise to strongly incidence-transitive codes of

symplectic type. Analysis of these cases is currently an open problem. We suspect that a computational

approach using GAP [59] should eliminate the remaining cases. Next we turned our attention to the

exceptional groups of Lie type and the sporadic groups. All factorisations of the exceptional simple

groups of Lie type and the sporadic simple groups are known [60, 36]. This information is used to

show that no X-strongly incidence-transitive codes exist with X∆ P C9 and socpX∆q a sporadic simple

group. A similar result holds for the exceptional simple groups of Lie type. The details are provided

in Appendix C.2, though there is a small open case associated with Lemma C.6

Theorem 8.5

Suppose Γ is one of the codes described in Problem 8.1 and let ∆ P Γ. Then there is no sporadic

simple group or exceptional simple group of Lie type T such that T Ĳ X∆ ď AutpT q.
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Analysis of the C9-subgroups of Sp2np2q with alternating socle is currently an open problem,

excluding of course the fully deleted permutation modules for the symmetric and alternating groups,

which are covered by Theorem 8.3. Some hints towards Problem 8.6 are provided in Appendix C.1.

Problem 8.6

Let V “ F2n
2 and let Γ be an X-strongly incidence-transitive code in JpQε, kq. Are there any examples

such that if ∆ P Γ, then socpX∆q is an alternating group acting absolutely irreducibly on V , but V is

not the fully deleted permutation module? Can they be classified?

The final component of our work focuses on the following problem, which builds on the work of

Bob Liebler and Cheryl Praeger in [1], and Nicola Durante in [28].

Problem 8.7 ([1])

Let V “ Fn2 . Classify the strongly incidence-transitive codes Γ Ă
`V
k

˘

with 2-transitive automorphism

group X ď AGLnp2q, where X contains the group of translations of V and 2 ď k ď |V| ´ 2.

Note that a generalised version of Problem 8.7 was considered in [1], namely with V “ Fq, leading

to new families of strongly incidence-transitive codes. However, during the course of our studies, we

discovered that the case q “ 2 is not fully covered by the work in [1] (see Appendix A for further

details). Problem 8.7 remains open at the present time, though the following results constitute a

contribution towards its solution. In Chapter 7 we introduced single-component strongly incidence-

transitive codes which, in addition to satisfying the properties described in Problem 8.7, also have

the property that T X X∆1
“ T X X∆2

for any pair of codewords ∆1 and ∆2. We showed that

every X-strongly incidence-transitive code can be expressed as a disjoint union of single-component

codes, each of which was again strongly incidence-transitive satisfying the conditions of Problem 8.7.

We also introduced translation-free strongly incidence-transitive codes, which are single-component

codes with the additional condition that T XX∆ is the trivial group for every codeword ∆. Our next

result was the construction of a projection from an arbitrary single-component code Γ in Jp2n, kq onto

a translation-free code in Jp2n´m, k{2`q, where the number of translations fixing a given codeword

setwise is 2`.

Theorem 8.8

Let Γ Ă
`V
k

˘

be an X-single-component code with |X∆ X T | “ 2` ‰ 1 for each codeword ∆. Let

M “ X∆ X T and let U denote the set of M -orbits in V. For each ∆ P Γ, define q∆ P
` U
k{2`

˘

to be the

set of M -orbits contained in ∆, and define qΓ :“ tq∆ | ∆ P Γu. Let U “ tm P V | tm P Mu. Then

X{M is a 2-transitive subgroup of AGLpV{Uq which contains the translation group of V{U , and qΓ is

an pX{Mq-strongly incidence-transitive code in JpV{U, k{2`q.
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Finally, we classified the translation-free X-strongly incidence-transitive codes and introduced a

construction which lifts a translation-free strongly incidence-transitive code in Jp2n, kq to a single-

component code in Jp2n`s, 2skq for an arbitrary positive integer s. It is currently unknown whether

there are alternative methods for lifting translation-free codes to single-component codes. The classi-

fication of translation-free X-strongly incidence-transitive codes is provided below.

Theorem 8.9

Let V “ Fn2 with n ě 3 and X “ T ¸ X0 ď AGLnp2q. Let Γ Ă
`V
k

˘

be an X-strongly incidence-

transitive code such that X∆ X T is the trivial group for all ∆ P Γ. Then n is even, X0 “ Spnp2q

or GLnp2q, and there exists an ε-type quadratic form ϕ on V such that ∆ “ tx P V | ϕpxq “ 0u

is a codeword of Γ. Conversely, taking ε P t˘u, X0 “ Sp2mp2q or GL2mp2q and Γ “ ∆X yields an

X-strongly incidence-transitive code in Jp22n, 2n´1p2n ` εqq.

Perhaps the most interesting of the open problems related to the classification of strongly incidence-

transitive codes concerns the so-called self-complementary strongly incidence-transitive codes. As

discussed in Chapter 1, the full automorphism group group of a Johnson graph on a finite set V of v

points is given by

AutpJpv, kqq “

#

SympVq ˆ C2 if k “ 1
2v

SympVq otherwise

Here, C2 denotes the group of order two generated by the complementary automorphism of Jp2k, kq

which maps each vertex to its complement in V. Throughout this thesis we have studied X-strongly

incidence-transitive codes in Jpv, kq, possibly with v “ 2k, but under the assumption thatX ď SympVq.
The same assumption is true in [1]. However, five examples of self-complementary strongly incidence-

transitive codes are constructed in [27]. This leads naturally to the following problem.

Problem 8.10

Let k ě 2. Classify the X-strongly incidence-transitive codes Γ contained in the Johnson graphs

Jp2k, kq with X acting 2-transitively on V, X ď SympVq ˆ C2 and X ę SympVq.

The research outlined above will be submitted for publication upon submission of this thesis.
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APPENDIX A

A note on [1, Proposition 6.6]

We note that there is a small oversight in Proposition 6.6 of [1], though we show in Lemma A.1

that the conclusions draw in in Proposition 6.6 remain valid for all q ą 2. Recall that set of ∆ of

points in V is called a r0, x, qs1 set if every affine 1-flat in V intersects ∆ in 0, x or q points.

Lemma A.1

Let V “ Fmq with q ą 2 and let ∆ Ă V be a r0, x, qs1 set, where x P t1, q ´ 1u. Suppose T Ĳ X ď

AΓLpm, qq and X∆ acts transitively on ∆ˆ∆. Then ∆ is an affine subspace or the complement of an

affine subspace in V .

Proof. Interchanging ∆ and ∆ if necessary, we may assume that x “ 1. The automorphism

group AutpΓq is transitive on codewords so we may assume further that 0 P ∆. Since ∆ is a r0, 1, qs1

set, any affine 1-flat that contains two points of ∆ must be contained in ∆. In particular, if u P ∆zt0u

then t0, uu Ď xuyX∆ and hence xuy Ď ∆. Therefore ∆ is closed under scalar multiplication. If xuy “ ∆

we are done. If not, there must exist v P ∆ which does not lie along xuy. Let β P Fqzt0, 1u. Then

the affine 1-flat L “ xu ` vy ` p1 ´ βqv contains p1 ´ βqv, βu ` v and pβ ´ 1qu. Since both p1 ´ βqv

and pβ ´ 1qu are contained in ∆, it follows that L Ď ∆ and therefore βu` v P ∆. Similarly, the affine

1-flat L1 “ xuy ` v contains v, u` v and βu` v, and hence L1 Ď ∆ so u` v P ∆. Therefore ∆ is also

closed under addition, and ∆ is a subspace of V . �
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Some known primitive strongly incidence-transitive codes

The primitive codes are divided into several subcategories: projective type, affine type, rank 1

type, Jordan-Steiner type, and sporadic. We describe some of these.

B.1. Projective type codes

Let V “ PGn´1pqq and X “ PΓLnpqq. We collect below some essential results from [1] regarding the

X-strongly incidence-transitive codes in JpV, kq.

Example B.1 (Projective subspace codes [1])

Let Γ denote the set of all ps ´ 1q-dimensional projective subspaces of V. Then X acts transitively

on Γ and for each ∆ P Γ, the setwise stabiliser X∆ acts transitively on ∆ ˆ ∆. Therefore Γ is an

X-strongly incidence-transitive code in JpV, kq with v “ qn´1
q´1 , k “ qs´1

q´1 and δ “ qs´1. Similarly, the

set of all complements of ps´1q-dimensional subspaces of V is an X-strongly incidence-transitive code

in JpV, k1q with v “ qn´1
q´1 , k1 “ qn´qs

q´1 and δ “ qs´1.

Example B.2 (Baer subline codes [1])

Let q “ q2
0 ě 4, V “ PG1pqq and X “ PΓL2pqq. Identify V with Fq Y t8u and let ∆ “ Fq0 Y t8u.

The X-images of ∆ in PG1pqq are called Baer sublines. Let Γ denote the set of all Baer sublines in

PG1pqq. Then Γ is an X-strongly incidence-transitive code in Jpq ` 1, q0 ` 1q with minimum distance

δ “ q0 ´ 1 and X∆ “ NXpPSL2pq0qq.

Theorem B.3 ([1])

Let V “ PG1pqq with q ě 4. Let PSL2pqq ď X ď PΓL2pqq and suppose Γ Ă Jpq`1, kq is an X-strongly

incidence-transitive code with 3 ď k ď q ´ 2. Then for each ∆ P Γ, one of ∆ and ∆ is a Baer subline,

as in Example B.2.

Theorem B.4 ([1])

Let V “ PGn´1pqq. Suppose PSLnpqq ď X ď PΓLnpqq and Γ Ă JpV, kq, where v ě 3 and 3 ď k ď

|V| ´ 3. If Γ is X-strongly incidence-transitive and ∆ P Γ then, interchanging ∆ and ∆ if necessary,

one of the following holds:

(i) ∆ is a projective subspace as in Example B.1;

(ii) ∆ is a subset of class r0, 2, q ` 1s1 and |V|´1
q ` 1 ď k ď 2p|V|´1q

q ; or
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(iii) ∆ is a subset of class r0,
?
q` 1, q` 1s1, |V|´1

?
q ` 1 ď k ď |V|´1

?
q `

|V|´1
q and if λ is a ∆-shared line

then λX∆ is a a Baer subline.

Durante demonstrates in [28] that there are no further examples of strongly incidence-transitive

codes in the projective case.

B.2. Affine type codes

Let V “ AGnpqq and X “ AΓLnpqq. We collect below some essential results from [1] regarding the

X-strongly incidence-transitive codes in JpV, kq.

Example B.5 ([1])

Let V “ Fnq and X “ AΓLpV q. For any positive integer m ă n, the set of all affine m-flats is an

X-strongly incidence-transitive code in Jpqn, qmq. Similarly, the set of all complements in V of affine

m-flats is an X-strongly incidence-transitive code in Jpqn, qn ´ qmq.

Example B.6 ([1])

Let W “ F4 and V “ F16. Let X “ AΓL1p16q. Then V is a 4-dimensional vector space over F4

containing W as a 1-dimensional subspace. Then ∆X and ∆
X

are X-strongly incidence-transitive

codes in Jp16, 4q and Jp16, 12q respectively.

Example B.7 ([1])

A set of 6 points in PGp2, 4q, no 3 collinear is a hyperoval (see ). Let ∆ be a 2-transitive hyperoval in

the projective plane PGp2, 4q, and let λ be an affine line containing no points of ∆. Then k “ |∆| “ 6

and the complement of λ in the point set of PGp2, 4q is an affine space V “ AGp2, 4q containing ∆.

Let X be the stabiliser of λ in PΓL3p4q. Then X acts faithfully on V and Γ “ ∆X is an X-strongly

incidence-transitive code in JpV, 6q and X∆ – S5. By Remark 1.5, the complementary code in JpV, 12q

is also X-strongly incidence-transitive.

Theorem B.8 ([1])

Suppose V “ Fnq with n ě 2 and suppose Γ ď JpV, kq is an X-strongly incidence-transitive code, where

X ď AΓLnpqq is 2-transitive on V . Let ∆ P Γ. Then one of the following holds:

(i) ∆ or ∆ is an affine subspace, as in Example B.5;

(ii) V “ Fn4 and interchanging ∆ and ∆ if necessary, every affine line in V lies in ∆ or ∆, or intersects

∆ in a Baer subline. Moreover, qn`2
3 ď k ď 2pqn´1q

3 ; or

(iii) V “ Fn16 and interchanging ∆ and ∆ if necessary, every affine line in V either lies in ∆ or ∆ or

intersects ∆ in a Baer subline of size 4. Moreover, qn`4
5 ď k ď 4pqn´1q

15 .
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Example B.7 provides an example for case (ii) of Theorem B.8. At her 2012 plenary lecture in

Ferrara at the Conference of Finite Geometry in honor of Frank De Clerck, Praeger asked what was

known about subsets of class r0,m, qs1 in AGpn, qq, regardless of the symmetry restrictions.

Theorem B.9 ([1],[28])

Let ∆ Ă Fnq with n ě 2 and suppose the setwise stabiliser X∆ of ∆ in X ď AΓLpV q acts transitively

on ∆ˆ∆. Then ∆ or ∆ is one of the following:

(i) an affine subspace, as per Example B.5

(ii) a cylinder CylpV8,Mq of Fn4 , where M is either a hyperoval or the complement of a hyperoval

of a plane Π whose line at infinity is skew with the pn´ 3q-dimensional projective subspace V8
(iii) A pair of parallel hyperplanes in Fn4 ; or

(iv) Four parallel hyperplanes in Fn16 with the secant lines meeting the set in affine Baer sublines

B.3. Rank one codes

Example B.10 (The classical unital)

Let V “ F3
q2 and equip V with a nondegenerate Hermitian form. Then X “ PΓU3pqq acts faithfully

and 2-transitively on the set V of q3 ` 1 totally-isotropic 1-spaces in V . Every nondegenerate 2-space

in V contains q ` 1 elements of V. Define a code Γ Ă Jpq3 ` 1, q ` 1q by

Γ “ tV X U | U a nondegenerate 2-spaceu.

Then Γ is X-strongly incidence-transitive and δpΓq “ q.

Example B.11

Let V “ F3
9 and T “ PSU3p3q. Let Γ Ă JpV, 12q be the set of all ‘unitary bases’ of size 12 for V as a

12-dimensional vector space over F3. Then T∆ – 42¸S3 and Γ is a pT.2q-strongly incidence transitive

code with δpΓq “ 6. Moreover, Γ is not T -strongly incidence transitive.





APPENDIX C

Open and partially solved problems

C.1. C9 codeword stabilisers with alternating socle

Problem C.1

Let V “ F2n
2 . Are there any X-strongly incidence-transitive codes Γ in JpQε, kq such that if ∆ P Γ,

then socpX∆q is an alternating group acting absolutely irreducibly on V , but not as a fully-deleted

permutation module? Can they be classified?

We provide some basic observations related to Problem C.1. Let Γ be an X-strongly incidence-

transitive code and ∆ a codeword. Let G “ X∆ and suppose T Ĳ G ď AutpT q where T “ Am with

m ě 5. If m ě 15 and V is not the fully deleted permutation module for Sm then [66, Theorem 7]

implies dimpV q ě 1
4mpm ´ 5q. Applying this bound in combination with the inequality |AutpT q| ą

2dimpV q´2, we arrive at the necessary condition

log2pm!q ´
1

8
mpm´ 5q ` 2 ą 0. (C.1)

Figure C.1 below suggests that in order to satisfy Inequality (C.1), we must have 15 ď m ď 36. Note

that this says nothing about m ă 15. Further, by Lemma 1.15, for each pϕ,ψq P ∆ˆ∆ there exists a

factorisation X∆ “ X∆,ϕX∆,ψ. The factorisations of almost-simple groups with alternating socle are

known, and the details are provided below.

Theorem C.2 ([35], Theorem D)

Let m ě 5 and consider T “ Am acting naturally on a set Ω of m points. Let G be an almost-simple

Figure C.1. A plot of bpmq “ log2pm!q ´ 1
8mpm´ 5q ` 2 against m for 15 ď m ď 40.
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group with socle T and let A and B be subgroups of G which do not contain T . If G “ AB then one

of the following holds:

(a) Am´k ŸA ď Sk ˆ Sm´k for an integer k P r1 : 5s, and B is k-homogeneous on Ω;

(b) m “ 10, A “ PSL2p8q or PSL2p8q ¸ Z3, and A5 ˆA5 Ĳ B ď S5 o S2 with B transitive on Ω;

(c) m “ 8, A “ AGL3p2q and Z5 ˆ Z3 ď B

(d) m “ 6 and one of:

(i) AX T “ PSL2p5q and B X T ď S3 o S2, with AX S6 and B X S6 both transitive on Ω,

(ii) AX T “ Z5 or D10 and B X T ď S3 o S2,

(iii) G ę S6 and the intersections AX S6 and B X S6 are as in item (a)

By Theorem C.1, the problem of classifying the X-strongly incidence-transitive codes with X∆ P C9

and socpX∆q “ Am can, in theory, be solved by identifying which of the factorisations described above

can be associated with the Jordan-Steiner actions. This is currently an open problem.

C.2. C9 codeword stabilisers with exceptional Lie type socle

We denote by V – F2n
2 the natural module for X and by Qε the set of ε-type quadratic forms on V

which polarise to the symplectic form fixed by X. If Γ Ă
`Qε
k

˘

is X-strongly incidence-transitive and

∆ P Γ then Lemma 1.15 implies X∆ “ X∆,ϕX∆,ψ is a factorisation, where pϕ,ψq P ∆ ˆ∆. Suppose

X∆ is an exceptional group of Lie type. Then part (a) of Theorem C.3 implies that T “ G2p3
f q, G2p4q

or F4p2
f q. We consider each case in turn.

Theorem C.3 ([60])

Let G be an exceptional group of Lie type and let G “ AB for proper subgroups A,B ă G. Then one

of the following holds:

(a) G “ T and one of the following holds:

(i) G “ G2pqq, SL3pqq ď A ď SL3pqq.2, SU3pqq ď B ď SU3pqq.2, q “ 3f ;

(ii) G “ G2pqq, A “
2G2pqq, SL3pqq ď B ď SL3pqq.2, q “ 32f`1; or

(iii) G “ G2p4q, A “ J2, SU3p4q ď B ď SU3p4q.2;

(iv) G “ F4pqq, A “ Sp8pqq,
3D4pqq ď B ď 3D4pqq.3, q “ 2f .

(b) G ‰ T and one of the following holds:

(i) T “ pT XAqpT XBq with T , T XA and T XB as in part (a); or

(ii) G “ G2p4q.2, A “ G2p2q ˆ 2, B “ SU3p4q.4.

Lemma C.4

Let X “ Sp2np2q and let Γ Ă
`Qε
k

˘

is an X strongly incidence-transitive code with ∆ P Γ and X∆

almost-simple and irreducible. Then socpX∆q ‰ G2p3
f q.
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Proof. Example D.3 shows that X∆ ‰ G2p3q or G2p3q.2. Suppose then that f ą 1. We have

|AutpT q| “ 2fq6pq6´1qpq2´1q ď 2q15, and by [62], dimpV q ě qpq2´1q. Therefore Lemma 6.3 implies

0 ă log2p|AutpT q|q ´ epT q ` 2 ă 15 log2pqq ´ q
3 ` q ` 3.

Set bpfq “ 15 log2p3
f q ´ 33f ` 3f ` 3. Then for all f ą 1 we have

bpf ` 1q ´ bpfq “ 15 log2p3
f`1q ´ 33pf`1q ` 3f`1 ` 3´ 15 log2p3

f q ` 33f ´ 3f ´ 3

“ 15 log2p3q ` p3
3f ´ 33pf`1qq ` p3f`1 ´ 3f q

“ 15 log2p3q ` 33f p1´ 33q ` 3f p3´ 1q

“ 15 log2p3q ´ 26 ¨ 33f ´ 2 ¨ 3f .

Note that bpfq is decreasing and therefore for all f ě 2, bpfq ď bp2q « ´662.5. This contradicts

Lemma 6.3. Therefore socpX∆q ‰ G2p3
f q for any f ě 1. �

Lemma C.5

Let X “ Sp2np2q and let Γ Ă
`Qε
k

˘

is an X strongly incidence-transitive code with ∆ P Γ and X∆

almost-simple. Then socpX∆q ‰ G2p4q.

Proof. We apply Theorem C.3. If T “ G2p4q “ G then we have A “ J2 and B “ SU3p4q

or SU3p4q.2. Another possibility is G “ T.2 with A “ NGpJ2q “ J2.2 and B “ NGpSU3p4qq “

NGpSU3p4q.2q “ SU3p4q.4. For the cases above we have |Ω| “ |G : A| ` |G : B| P t4448, 2432u and

νep|Ω|q P t2
5, 27u. But if n P t6, 8u then |QεpF2n

2 q| P t2016, 2080, 32640, 32896u, so |Ω| ‰ |Qε|. Finally,

suppose G “ T.2 with A “ G2p2qˆ2 and B “ SU3p4q.4. Then |Ω| “ |G : A|`|G : B| “ 73856 “ 27¨577,

which contradicts Lemma 6.2. Therefore socpX∆q ‰ G2p4q. �

Lemma C.6

Let X “ Sp2np2q and let Γ Ă
`Qε
k

˘

is an X strongly incidence-transitive code with ∆ P Γ and X∆

almost-simple. Then X∆ ‰ F4pqq with q “ 2f .

Proof. Suppose T “ F4pqq with A “ Sp8pqq, B “ 3D4pqq or 3D4pqq.3 and q “ 2f . Then

|T | “ q24pq12 ´ 1qpq8 ´ 1qpq6 ´ 1qpq2 ´ 1q, |A| “ q16pq2 ´ 1qpq4 ´ 1qpq6 ´ 1qpq8 ´ 1q, |B| “ q12pq2 ´

1qpq6 ´ 1qpq8 ` q4 ´ 1q or 3q12pq2 ´ 1qpq6 ´ 1qpq8 ` q4 ´ 1q. Then

|T : A| “
q24pq12 ´ 1qpq8 ´ 1qpq6 ´ 1qpq2 ´ 1q

q16pq2 ´ 1qpq4 ´ 1qpq6 ´ 1qpq8 ´ 1q
“ q8pq8 ` q4 ` 1q

|T : B| “
q24pq12 ´ 1qpq8 ´ 1qpq6 ´ 1qpq2 ´ 1q

q12pq2 ´ 1qpq6 ´ 1qpq8 ` q4 ´ 1q
“ q12pq4 ´ 1qpq8 ´ 1q

Therefore

|T : A| ` |T : B| “ q8
`

q8 ` q4 ` 1q ` q4pq4 ´ 1qpq8 ´ 1q
˘

“ q8pq12pq4 ´ 1q ` 1q. (C.2)
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Since q “ 2f , νe p|T : A| ` |T : B|q “ q8. If |Qε| “ |T : A| ` |T : B| then q8 “ 2n´1 and therefore

|Qε| “ q8p2 ¨ q8 ` εq. (C.3)

Comparing equation (C.3) with equation (C.2), we have |Qε| “ |T : A| ` |T : B| if and only if

q12pq4 ´ 1q ` 1´ 2 ¨ q8 ´ ε “ q8pq8 ´ q4 ´ 1q ` 1´ ε “ 0. (C.4)

But q8pq8 ´ q4 ´ 1q ` 1 ´ ε ě q8pq8 ´ q4 ´ 1q. Since q ą 0 and q8 ´ q4 ´ 1 ą 0, equation (C.4) does

not hold. Therefore X∆ ‰ F4pqq. �

Remark C.7

It is desirable to extend or modify Lemma C.6 so as to eliminate completely the possibility that

socpX∆q “ F4pqq. We note that νep|F4pqq|q “ q24, νep| Sp8pqq|q “ q16, νep|
3D4pqq|q “ q12. Therefore

νep|F4pqq : Sp8pqq|q “ q8 and νep|F4pqq : 3D4pqq|q “ q12. If F4pqq Ĳ G “ X∆ ď AutpF4pqqq then we

have q12 ď |G : B| ď 2fq12 and q8 ď |G : A| ď 2fq8.

C.3. Binary affine subspace codes

Suppose NXpT∆q “ X∆, where T∆ is a nontrivial proper subgroup of T . T∆ acts regularly on ∆ and

therefore ∆ is a subspace of V. In this case |M| “ |Γ| so Γ is a collection of affine flats.

Example C.8

Let V “ Fn2 with n ě 3 and 1 ă d ă n. Let Γ be the set of all d-flats in AGpV q. Then AutpΓq “

AGLpV q and Γ is X-strongly incidence-transitive. In particular, let tei | 1 ď i ď nu be a basis for V

and let U “ xei | 1 ď i ď dy where d ă n. As a matter of convenience we let W be a complement of

U in V so that V “ U ‘W . Since X is transitive on the set of affine d-flats we may take ∆ “ U . We

have X∆ “ TU ¸ P where T “ ttu P T | u P Uu and P “ X0,U is the group of matrices of the form

P “ X0,U “

#˜

a O

r b

¸

| a P GLpUq, b P GLpW q, r P Fpn´dq2 ˆ Fd2

+

“ R¸ pGLpUq ˆGLpW qq.

We write pr, a, bq P R¸ pGLpUq ˆGLpW qq. Then for v “ u`w P V the action of P can be expressed

as pu` wqpr, a, bq “ ua` wr ` wb where u P U and w PW . Note that ua` wr P U and wb PW .

Lemma C.9

Let H “ tpO, Id, bq P P u, where O is the pn´ dq ˆ d zero matrix. With the notation of Example C.8,

H is transitive on the nonzero vectors in the quotient space V {U .

Proof. By definition W “ xei | d`1 ď i ď ny and V {U “ xU`ei | d`1 ď i ď ny. The canonical

quotient mapping π : W Ñ V {U defined by ei ÞÑ U `ei is an isomorphism of vector spaces. Moreover,

for all U ` w P V {U with w P W we have pU ` wqpO, Id, bq “ U ` wb. Since GLpW q acts transitively

on W zt0u, it follows that H acts transitively on the nonzero vectors in V {U . �
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Lemma C.10

Given v P V zU , the unipotent radical R acts transitively on the coset U ` v.

Proof. We may assume without loss of generality that v PW . Let u1 ` v, u2 ` v P U ` v.

Let pr, Id, In´dq P R. Then pu1 ` vqpr, Id, In´dq “ u1 ` vr ` v, so R is transitive on U ` v if and

only if there exists a pn´ dq ˆ d matrix r such that vr “ u2` u1. Since v ‰ 0 there exists a j P r1 : ns

such that the jth coordinate of v is 1. Then we define r to be the matrix whose jth row is equal to

u2`u1 and we set all other entries equal to zero. Then vr “ u2`u1 and R is transitive on U ` v. �

Lemma C.11

Let X “ AGLnp2q and let Γ denote the code defined in Example C.8. Then Γ is an X-strongly

incidence-transitive code in Jp2n, 2dq.

Proof. By Lemma 1.20, Γ is X-strongly incidence-transitive if and only if

(i) X is transitive on V ;

(ii) there exists u P V such that Xu acts transitively on the set Γu of codewords which contain u;

and

(iii) there exists ∆ P Γ with u P ∆ such that Xu,∆ acts transitively on ∆.

Clearly X acts transitively on V since the subgroup of translations is transitive on V . Therefore

property (i) holds. Next we choose u “ 0 and consider the set Γ0 of codewords that contain 0.

Specifically, Γ0 is the set of m-dimensional subspaces of V and X0 “ GLpV q acts transitively on Γ0, so

property (ii) holds. Next, consider the vectors x, y P V z∆ where x “ ed`1 and y “ u` w with u P U

and w P W zt0u. By Lemma C.9 H acts transitively on V {U and therefore there exists an element

h P H such that U`xh “ U`y “ U`v. Finally, the unipotent radical R fixes the quotient space V {U

pointwise but permutes transitively the set of points within a given coset by Lemma C.10. Therefore

there exists r P R such that U ` v is fixed setwise but xhr “ y. Therefore property (iii) holds. �

Lemma C.11 shows that the set of all d-flats in V is a strongly incidence-transitive code with

automorphism group AGLpV q. It remains to determine whether there are any strongly incidence-

transitive subcodes with automorphism group X “ T ¸ X0, where X0 ă GLpV q is transitive on the

nonzero vectors in V . Theorem C.12 provides a list of subgroups of GLnp2q which act transitively on

Fn2 zt0u. Note that this is a special case of Herring’s Theorem; see [67] for further details.

Theorem C.12 ([67])

If X0 is a subgroup of GLnp2q which is transitive on Fn2 zt0u then X0 lies in one of the following classes:

(i) X0 ď ΓL1p2
nq,

(ii) X0 Ÿ SLap2
bq with n “ ab,

(iii) X0 Ÿ Sp2ap2
bq with n “ 2ab,

(iv) X0 “ A7 ă A8 “ SL4p2q,

(v) X0 “ A6 – Sp4p2q
1 and n “ 4, or
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(vi) X0 ŸG2p2q
1 and n “ 6.

Conversely, each of the above classes gives rise to a subgroup of GLnp2q which acts transitively on

Fn2 zt0u.

Let Γ be the code from Example C.8. Given one of the groups X0 from Theorem C.12 we can

potentially construct codes Γ1 Ď Γ by computing the orbits of X0 on the r-dimensional subspaces of

V for 2 ď r ď n ´ 2. If ∆ is an orbit representative and X0,∆ is transitive on V z∆ then we may

take Γ to be the set of all translations of each subspace in ∆X0 . The next example shows that there

are translation-regular strongly incidence-transitive codes other than the family presented in Example

C.8. Note that Γ1 “ Γ if and only if ∆X
0 is the full set of r-dimensional subspaces of V . In particular,

X0 always acts transitively on the set of 1-spaces and the set of pn´ 1q-spaces in Fn2 by definition.

Example C.13

We consider the final two cases from Theorem C.12 using GAP [59].

(1) Let V “ F4
2 and X0 “ A6 – Sp4p2q

1. X0 acts transitively on the set of 3-spaces V but has

two orbits in the set of 2-spaces with representatives U1 “ xe2, e3y and U2 “ xe1`e3, e2`e3y.

Using GAP we find X0,U1 – S4 acts transitively on V zU1 while X0,U2 – C3 ˆ C3 ¸ C2 is

intransitive on V zU2. Therefore, taking ∆ “ U1 and X “ T ¸A6 yields a strongly incidence

transitive code in Jp16, 4q.

(2) Let V “ F6
2 and X0ŹG2p2q

1. Suppose X0 “ G2p2q
1. Then X0 has orbit lengths r252, 63, 336s

on lines, r756, 504, 36, 63, 36s on planes, and r336, 252, 63s on solids. Only one of these orbits

yields a strongly incidence-transitive code. Taking ∆ “ xe1, e2, e3, e6y, we find k “ 16,

|Γ0| “ 63 and X0,∆ “ SL2p3q¸C4. Taking X0 “ G2p2q yields only the code code above with

X0,∆ “ pSL2p3q ¸ C4q ¸ C2.

Note that replacing ∆ by ∆ in Example C.13 yields strongly incidence-transitive codes. There

are no new examples arising from item (iv) of Theorem C.12 since A7 acts transitively on the 2 and

3-spaces in F4
2. A full classification of the translation-regular affine type codes requires only an analysis

of Theorem C.12 (cases (i) - (iii)) and is an open problem at present.
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GAP code

Additional code is available from [64].

D.1. Tools

Program D.1

# Compute largest dim(V) such that 2^{n-1}(2^n-1) <= order (of an unspecified group)

LargestDim := function(order)

local n;

n := 1;

while 2^(n-2)*(2^n-1) <= order do;

n := n+1;

od;

return 2*(n-1);

end;

Program D.2

# Compute the values of k such that k(v-k) divides order

KPossible := function(order,dim,eps)

local v, n;

n := dim/2;

v := 2^(n-1)*(2^n+eps);

return Filtered([2..v/2], k->order/(k*(v-k)) in Integers);

end;

Example D.3

Consider X “ Sp2np2q acting 2-transitively on Qε. Does there exist an X-strongly incidence-transitive

code Γ with ∆ P Γ and X∆ – G2p3q? We use GAP to provide an answer.

gap> g:=AtlasGroup("G2(3)");;

gap> order:=Order(g);

4245696

gap> LargestDim(order);

24
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gap> KPossible(order,14,1);

[ ]

gap> KPossible(order,14,-1);

[ ]

D.2. Examples

Program D.4

Some calculations used in the proof of Lemma 5.37

# The primitive action of S10 on 120 points is available from the PrimGrp package

gap> omega:=[1..120];;

gap> g := PrimitiveGroup(120,19);

Sym(10)

gap> NrMovedPoints(g);

120

gap> cc:=ConjugacyClassesMaximalSubgroups(g);;

gap> rep:=List(cc,Representative);;

gap> filt:=Filtered(rep, grp -> Order(grp)/(60^2) in Integers);;

gap> List(filt,StructureDescription);

[ "A10", "(A5 x A5) : D8" ]

gap> for grp in filt do; Display(OrbitLengths(grp,omega)); od;

[ 120 ]

[ 20, 100 ]

# A10 is transitive so we must investigate further

gap> h:=filt[1];;

gap> cc:=ConjugacyClassesMaximalSubgroups(h);;

gap> rep:=List(cc,Representative);;

gap> filt:=Filtered(rep, grp -> Order(grp)/(60^2) in Integers);;

gap> List(filt,StructureDescription);

[ "(A5 x A5) : C4" ]

gap> for grp in filt do; Display(OrbitLengths(grp,omega)); od;

[ 20, 100 ]
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[20] P. Solé, “Completely regular codes and completely transitive codes,” Discrete mathematics, vol. 81, pp. 193 – 201,

1990.

[21] M. Giudici and C. E. Praeger, “Completely transitive codes in hamming graphs,” European Journal of Combina-

torics, vol. 20, no. 7, pp. 647 – 662, 1999.

[22] M. H. D. R. P. C. E. Gillespie, Neil I.; Giudici, “Entry-faithful 2-neighbour transitive codes,” Designs, Codes and

Cryptography, vol. 79, 6 2016.

[23] N. Gillespie and D. Hawtin, “Alphabet-almost-simple 2-neighbour-transitive codes,” Ars Mathematica Contempo-

ranea, vol. 14, no. 2, pp. 345–357, 2018.

[24] N. I. Gillespie and C. E. Praeger, “Neighbour transitivity on codes in hamming graphs,” Designs, Codes and

Cryptography, vol. 67, pp. 385–393, Jun 2013.

121



122 BIBLIOGRAPHY

[25] D. R. Hawtin, N. I. Gillespie, and C. E. Praeger, “Elusive codes in hamming graphs,” Bulletin of the Australian

Mathematical Society, vol. 88, no. 2, p. 286296, 2013.

[26] C. D. Godsil and C. E. Praeger, “Completely transitive designs,” 2014.
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